Implicit:快速Python协同过滤库

Implicit:快速Python协同过滤库

implicit Fast Python Collaborative Filtering for Implicit Feedback Datasets implicit 项目地址: https://gitcode.com/gh_mirrors/im/implicit

项目基础介绍和主要编程语言

Implicit是一个用于处理隐式反馈数据集的快速Python协同过滤库。该项目主要使用Python语言编写,并结合了Cython、Cuda和C++等语言来优化性能。Implicit旨在提供高效的推荐算法实现,适用于需要处理大规模隐式反馈数据的应用场景。

项目核心功能

Implicit项目提供了多种流行的推荐算法实现,包括:

  1. 交替最小二乘法(Alternating Least Squares, ALS):适用于隐式反馈数据集的协同过滤算法。
  2. 贝叶斯个性化排序(Bayesian Personalized Ranking, BPR):一种基于排序的推荐算法。
  3. 逻辑矩阵分解(Logistic Matrix Factorization):结合逻辑回归的矩阵分解方法。
  4. 基于距离的最近邻模型:使用余弦相似度、TFIDF或BM25等距离度量方法。

所有模型都支持多线程训练,利用Cython和OpenMP在所有可用CPU核心上并行计算。此外,ALS和BPR模型还具有自定义的CUDA内核,支持在兼容的GPU上进行训练。

项目最近更新的功能

Implicit项目最近更新的功能包括:

  1. 版本0.7.2:于2023年9月29日发布,包含多项性能优化和Bug修复。
  2. GPU支持:进一步优化了CUDA内核,提升了在GPU上的训练速度。
  3. 多线程优化:改进了多线程训练的并行效率,特别是在大规模数据集上的表现。
  4. 兼容性增强:增加了对Python 3.11的支持,并提升了与最新版本SciPy的兼容性。

Implicit项目持续更新,致力于提供更高效、更稳定的推荐算法实现,适用于各种隐式反馈数据集的应用场景。

implicit Fast Python Collaborative Filtering for Implicit Feedback Datasets implicit 项目地址: https://gitcode.com/gh_mirrors/im/implicit

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钟潜金

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值