HD3 项目使用教程

HD3 项目使用教程

hd3 Code for Hierarchical Discrete Distribution Decomposition for Match Density Estimation (CVPR 2019) hd3 项目地址: https://gitcode.com/gh_mirrors/hd/hd3

1. 项目目录结构及介绍

HD3 项目的目录结构如下:

hd3/
├── data/
│   ├── lists/
│   └── misc/
├── models/
├── scripts/
├── utils/
├── LICENSE
├── README.md
├── hd3losses.py
├── hd3model.py
├── inference.py
├── requirements.txt
└── train.py

目录结构介绍

  • data/: 存放数据集相关文件,包括数据列表和杂项文件。

    • lists/: 存放数据集的列表文件。
    • misc/: 存放其他杂项数据文件。
  • models/: 存放模型定义和实现的相关文件。

  • scripts/: 存放项目的启动脚本和配置脚本。

  • utils/: 存放项目中使用的工具函数和辅助函数。

  • LICENSE: 项目的许可证文件。

  • README.md: 项目的介绍文档。

  • hd3losses.py: 定义了 HD3 模型的损失函数。

  • hd3model.py: 定义了 HD3 模型的结构。

  • inference.py: 用于模型推理的脚本。

  • requirements.txt: 项目依赖的 Python 包列表。

  • train.py: 用于模型训练的脚本。

2. 项目的启动文件介绍

train.py

train.py 是 HD3 项目的主要启动文件之一,用于模型的训练。该脚本支持多种数据集和任务类型(如立体匹配和光流估计)。

主要功能
  • 数据加载: 支持加载多种数据集,如 FlyingChairs、FlyingThings3D、KITTI 和 MPI Sintel。
  • 模型训练: 支持自定义网络架构、学习率调度、数据增强等。
  • 日志记录: 支持 TensorBoard 记录训练过程中的指标和损失。
使用方法
python train.py --dataset_name FlyingChairs --encoder dla34 --decoder hd3 --task stereo

inference.py

inference.py 是 HD3 项目的另一个主要启动文件,用于模型的推理。该脚本支持对图像对进行推理,并生成预测结果。

主要功能
  • 图像对推理: 支持对指定文件夹中的图像对进行推理。
  • 结果保存: 支持将推理结果保存为不同的格式(如 PNG 或 FLO)。
  • 评估: 支持在有真值的情况下进行评估,计算预测结果的端点误差(End-Point-Error)。
使用方法
python inference.py --data_list /path/to/data_list.txt --save_folder /path/to/save --flow_format png

3. 项目的配置文件介绍

requirements.txt

requirements.txt 文件列出了 HD3 项目运行所需的 Python 包及其版本。通过该文件,用户可以快速安装项目所需的所有依赖。

使用方法
pip install -r requirements.txt

scripts/train.sh

scripts/train.sh 是一个启动训练的脚本,用户可以通过该脚本快速启动训练过程。脚本中包含了一些默认参数,用户可以根据需要进行修改。

使用方法
bash scripts/train.sh

scripts/test.sh

scripts/test.sh 是一个启动推理的脚本,用户可以通过该脚本快速启动推理过程。脚本中包含了一些默认参数,用户可以根据需要进行修改。

使用方法
bash scripts/test.sh

通过以上介绍,您应该能够了解 HD3 项目的目录结构、启动文件和配置文件的基本使用方法。希望这份教程对您有所帮助!

hd3 Code for Hierarchical Discrete Distribution Decomposition for Match Density Estimation (CVPR 2019) hd3 项目地址: https://gitcode.com/gh_mirrors/hd/hd3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

章瑗笛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值