HD3 项目使用教程
1. 项目目录结构及介绍
HD3 项目的目录结构如下:
hd3/
├── data/
│ ├── lists/
│ └── misc/
├── models/
├── scripts/
├── utils/
├── LICENSE
├── README.md
├── hd3losses.py
├── hd3model.py
├── inference.py
├── requirements.txt
└── train.py
目录结构介绍
-
data/: 存放数据集相关文件,包括数据列表和杂项文件。
- lists/: 存放数据集的列表文件。
- misc/: 存放其他杂项数据文件。
-
models/: 存放模型定义和实现的相关文件。
-
scripts/: 存放项目的启动脚本和配置脚本。
-
utils/: 存放项目中使用的工具函数和辅助函数。
-
LICENSE: 项目的许可证文件。
-
README.md: 项目的介绍文档。
-
hd3losses.py: 定义了 HD3 模型的损失函数。
-
hd3model.py: 定义了 HD3 模型的结构。
-
inference.py: 用于模型推理的脚本。
-
requirements.txt: 项目依赖的 Python 包列表。
-
train.py: 用于模型训练的脚本。
2. 项目的启动文件介绍
train.py
train.py
是 HD3 项目的主要启动文件之一,用于模型的训练。该脚本支持多种数据集和任务类型(如立体匹配和光流估计)。
主要功能
- 数据加载: 支持加载多种数据集,如 FlyingChairs、FlyingThings3D、KITTI 和 MPI Sintel。
- 模型训练: 支持自定义网络架构、学习率调度、数据增强等。
- 日志记录: 支持 TensorBoard 记录训练过程中的指标和损失。
使用方法
python train.py --dataset_name FlyingChairs --encoder dla34 --decoder hd3 --task stereo
inference.py
inference.py
是 HD3 项目的另一个主要启动文件,用于模型的推理。该脚本支持对图像对进行推理,并生成预测结果。
主要功能
- 图像对推理: 支持对指定文件夹中的图像对进行推理。
- 结果保存: 支持将推理结果保存为不同的格式(如 PNG 或 FLO)。
- 评估: 支持在有真值的情况下进行评估,计算预测结果的端点误差(End-Point-Error)。
使用方法
python inference.py --data_list /path/to/data_list.txt --save_folder /path/to/save --flow_format png
3. 项目的配置文件介绍
requirements.txt
requirements.txt
文件列出了 HD3 项目运行所需的 Python 包及其版本。通过该文件,用户可以快速安装项目所需的所有依赖。
使用方法
pip install -r requirements.txt
scripts/train.sh
scripts/train.sh
是一个启动训练的脚本,用户可以通过该脚本快速启动训练过程。脚本中包含了一些默认参数,用户可以根据需要进行修改。
使用方法
bash scripts/train.sh
scripts/test.sh
scripts/test.sh
是一个启动推理的脚本,用户可以通过该脚本快速启动推理过程。脚本中包含了一些默认参数,用户可以根据需要进行修改。
使用方法
bash scripts/test.sh
通过以上介绍,您应该能够了解 HD3 项目的目录结构、启动文件和配置文件的基本使用方法。希望这份教程对您有所帮助!