Labelme的安装及使用教程(手把手教会,适合小白)

简介:LabelMe是一款广泛使用的图像标注工具,主要用于计算机视觉领域的数据准备。它可以帮助用户轻松地在图像上标注目标对象,并生成可用于训练机器学习模型的数据集。LabelMe支持多种类型的标注,包括边界框(bounding boxes)、多边形(polygons)、点等。

1.安装
  • 激活已有python环境后,使用pip安装 labelme:

pip install labelme -i https://pypi.tuna.tsinghua.edu.cn/simpleAI助手
  • 安装labelme 依赖的其他 Python库,如 PyQt5、Pillow、numpy
     
      
    1. pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple

    2. ......

2.使用教程
  • 安装完成后,键入labelme自动打开操作界面

 点击打开目录选中自己的数据集后,点击编辑进行标注

  • 对于关键点任务,选择创建控制点即可)

  • 点击保存为json文件 ——JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。

           

{
  "version": "5.5.0",
  "flags": {},
  "shapes": [
    {
      "label": "1",
      "points": [
        [
          547.0125786163522,
          279.22641509433964
        ],
        [
          775.3144654088051,
          387.4025157232705
        ]
      ],
      "group_id": null,
      "description": "战车",
      "shape_type": "rectangle",
      "flags": {},
      "mask": null
    },
    {
      "label": "2",
      "points": [
        [
          387.5,
          253.3125
        ],
        [
          441.40625,
          293.15625
        ]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "rectangle",
      "flags": {},
      "mask": null
    },
    {
      "label": "3",
      "points": [
        [
          108.59375,
          280.65625
        ],
        [
          351.5625,
          419.71875
        ]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "rectangle",
      "flags": {},
      "mask": null
    },
    {
      "label": "4",
      "points": [
        [
          678.90625,
          253.3125
        ],
        [
          716.40625,
          274.40625
        ]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "rectangle",
      "flags": {},
      "mask": null
    },
    {
      "label": "5",
      "points": [
        [
          178.125,
          252.53125
        ],
        [
          205.46875,
          270.5
        ]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "rectangle",
      "flags": {},
      "mask": null
    },
    {
      "label": "6",
      "points": [
        [
          518.75,
          251.75
        ],
        [
          567.1875,
          268.15625
        ]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "rectangle",
      "flags": {},
      "mask": null
    },
    {
      "label": "7",
      "points": [
        [
          17.96875,
          479.09375
        ],
        [
          77.34375,
          515.03125
        ]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "rectangle",
      "flags": {},
      "mask": null
    },
    {
      "label": "8",
      "points": [
        [
          676.5625,
          472.84375
        ],
        [
          835.15625,
          531.4375
        ]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "rectangle",
      "flags": {},
      "mask": null
    },
    {
      "label": "9",
      "points": [
        [
          346.875,
          248.625
        ],
        [
          367.1875,
          266.59375
        ]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "rectangle",
      "flags": {},
      "mask": null
    }
  ],
  "imagePath": "R-C.jpg",
  "imageData": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAI2A1IDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCV3YO3zHr60ze/940sn32+tNr6E8wXzH/vGk8x/wC8aQ0nSmFx3mP/AHjR5j/3jTTSUAO8x/7xpN7/AN40lJSAdvf+8aTzH/vGkpO1ADvMf+8aPMf+8abRQAu9/wC8aN7/AN4/nSUUwF3v/eNG9/7xptFAXF3v/eP50b3/ALx/OkoxQAvmP/eNJ5j/AN40UlAC+Y/940eY/wDeNJiigA8x/wC8fzo8x/7x/OikoELvf+8fzpRI/wDeNNooAd5j/wB40eY/9402lxQAvmP/AHj+dBd/7x/OkoxSAC7/AN40m9/7x/OijvTAN7/3jR5j/wB40YooAPMf+8aN7/3j+dJ2opgL5j/3j+dHmP8A3jSYoxQAb3/vGl8x/wC8abiigBfMf+8aPMf+8aSigLi+Y/8AeNJvf+8aaaXtQFxd74+8aA74+8fzpKO1FhDvMf8AvGk3v/eNJ2oxTsAu98/eNHmP/eP50UmKAF3v/eP50pkf+8aTFJiiwC+Y/wDfNHmP2Y0mKXFFgF3vj7xpN7/3jSUYoAcXf++fzo8x/wC8abS4oAXzH/vH86N7/wB403FFFgF3v/eNG98feNJR0oAXe/8AeP50b3/vH86SigBd7/3j+dG9/wC8fzpKMc0ALvf+8aN7/wB40mKKYC73/vGje3940lAFABvf+8aXe/8AeP50lGKADe3940u9/wC8aSigBd7/AN40b3/vGkooAXe/94/nRvf+8fzpKKAF3v8A3zRvf+8aSjFIBd7/AN40b3/vGkoxQAu9/wC8aN7/AN4/nSYooAXe/wDeNG9/7x/OkxRikAu9/wC8aN74+8aTHFGOKAF3v/eNG9/7xpKXFAxfMf8AvGjzH/vH86SjFAC+Y/8AeNHmP/eNJiiiwhfMf+8aXzH/ALx/OkxRiiwC+Y/940b3I+8aTFGKYEUm8/xH86pTK5z8zfnWkVzUMkQNMDCnjkP8TfnWZcRSZPzt+ddJLB7VRmthzxUShcpSOXmik5+dvzqlIso/jf8AM10s1r14qhLae1c06SZvGpYwX83++35moW83/no//fRrZe09qrvaH0rllQNVUKarJtH7yTp/fNFaC2p2jr0orL2DL9oj1qT77fWmU+T/AFjfWmV7B54lFBooASjFLSUAGKSl70UgExSGnUmKBiUYpSKSgQUntS0UAJRS0UAJiiloxQAlJjilopgJiilNFADaKdSUAGKTFLRQAUUUtACUUtFACUYpcUlACYopaMUwG0YpaKBCUUtGKAEopcUmKAExzRilxRigBKMcUtLQA3FGKdSYoATFFL2opgJijFLRQAlGKXFGKACkxS4oxQAmKMUtGKAExRilooEJijFLRQMTFGKWimAmKMUvaikAmKMUtGKAEoxS4opgJijGaWigQmKMUtFADcUU6igYmKMUtFAhKTFOopAJijHFLRigYmKMUtLigBKTFOxRigBKMUuKKAG4oxxTuKMUgG4oAp1GKAExRS0UAJijFLijFACYoxTsUYpgNx70tLijFACYoIp2KKLgQPGDVaSD2q+aay5p3EY8lvntVWS15PFbpiBzUTW4Pak0ikznns/aq72XtXSNbZ7VG1r7VDgUpGCLL5RxRXQi14HFFRyD5jbk/wBY31ptPk/1jfWmVoQJSGnUhoASilxRQAmKKWj1pAJ2pKWkoAKMUUUAJiilooGJjNGKWigBMUUtFAhKDSjNFADTRinUmKBDcUU4ijFMY3FFOxRigQ3FLinUUDG4pMU/FJigQ3FFOxS4oAbSU/FGOaBjMUU7FJigQ2lpccUYoAbijFOxRigBtGKXFGKYDaX8KXFLigBuKMU7FGKAG9qMc0uKXFADcUAUuOaXFMBuKMU7FGKAG4op2KMUgG9qMU7FGKAG4pcUuKMUwG4oxTsUYoAbijFLilxQA3FGM0uKMUCExRilxS4oAbijFOxRigBuKMU7FGKAG4pMU/FGKAGYpcUuKXFAxuKMU7FJigQ3FLinYoxQMbijFOxRigBuOKMcU7HFGKQCYop2KTFADaXFLilx7UwG0Uu2lxSAbijFOxRigBuKMU7FGKAG0Ac07FGKAG4pQOKdiigBmKXFOooAbilxS4zS4oAZikxzT8UmKAGYo20/FGKQDNgNIYxUgFLincBBEMDiipgOKKVxjpPvt9aZUkg/eN9aYaQCYoI4pe1FADaKWgigBKMUYooASkxTsUlACdqSnEUlACUUtFACUUtHegBKKUCjFACY4opaMUAJRTsUYoAbiinYox7UCG0uKXHNLigBmKWlx7UuKAG0Yp2KMUANxRilpaAG4oxTqMUANx7UYp3ajHFADMUU7tRimA3FFOxRigBuKMU7FGKAG4pMU/FGKYDMUuKdijFADcUmKfijFADMUYp+KAtADcUYp2OaMUANxRTsUYoAbijFOxRigBuKMU/FGKAGYoxT8UmKAG4pKfijFADMUYp+KMUAMxS4p2KMc0CG4oxTsUAUwG49qMU7FLikMZRinYoxTENxRin4oxQAzFGKdijFK4xuKMU7HNGKAG4oxTsUbaAG4oxTsUuKAG4oIp2OaMUANxRinYoxQA3FGKfikxQA3FGKdRigBuKMU7FGKAG45oxTsUYpAJijHFOxRjigBuKXFLilxTAbijFOxS4pAMxSYqTFJigCPbSgU7FLjigBgFLinbeKXbQA8dKKcF4oqShJB+8b60ypJPvn602hMQ3FJinYoxRcBuKTFOxSUXAQikxTqMUANpKdikoASjFLgUYpgJikp2KMUCG4zRinYxQBQMbiloxS4oASjtS44oxSASilxRTASilNFAhMYoxSgUuKAEoxxS4oxQAlHalxRjigBMUUuKWgBtGKdikxQAlGOKdRjigBlGKdijFMBtFOxRigBKMU7vRQA3FGOtOxRQA3FGKdjijFADcUY5p2KMUAJikxTqMUANxzRinAUYoAbilxS4oxQAmKMU7FGKYDcc0Yp2KMUANxSYp+KMUAMxRinYoxQA3FGKfijFADMUuKdijHNADcUYpwFGKAG4oxTsUYoENxRinYo20ANxRinYoxQAzFFPxRgUDGYoxzTsUYoAbjijFOxRigBMUYp2KMUANxRinYoxQA3FLilxRigBuOaXFLijbSAbilxS7aXFADcUY5p22lAoAZijFPxigDmkAwCjFSbaAKLjsMxQBxT9lO2GlzBYixQRU2wA0Fc0uYLEWBS7fapQmKXYaXMPlIdtKE4qYRc8nFLtVaTkPlIgvtSGMipgT2Wgrzk0czCwgQ4oqTI9aKV2OxBIP3jfWmGpJB+8b60wiqRAmKTFOxRii4xlGKdijFO4DcUlOxRRcQzFFOox60XAbRTiKTFMBMUUuKMUAJRilxRigBMUYpcUYoATHFGKdijFIBuKKdijFMBuKTHNPxRigQ3FGKdijFACYoxxS44pcUANxRinUYoAbijFLjmloGNxRinYpMUXEJR2p2KTtQAmKMU6jFMBuKMc07FGKAG4oxTsUYpgNxS4pcUuKAG4oxTscUYoAaRRinEcUYoAbilxS4pcUANxRinUYoAbijFPxRigBmKMU/FBFADMUYp+KMUAMxRin4oxQAzFGKfijFADMUYpxFLigBmKMU/FGKAGYoxT8UYoAZijFPxRQIZijFPxRigBmKKfikxQA2inYoxQA2jFOxRigBuKTFOxRigYlGKXFLigBuKMU7FGKAG4oxT8e1AX2pXAbijbUm2jHFK4WGbaXFPx7Uuz2pcw7DMUbak2U4JzU8xXKyHZmlC1NsPagJjrS5x8pFsoA9qmCgdBSheM4xS5g5SILxTuBT9ncmlAUfWp5irEeM9qUIT7U8nFNzRqGgu0DvSZANNLUmCaaQrgfrSZGemaOlJzVJEti5J9hQQPWgAntS7DT2FuOGMUVIF4opXKsyvIPnb60zFMuLlI5Gyy4P3SD1pYpkk4BBPWoVWN+W4cjtcdR2p1IRWhI3FGKdijHNADCKMU7FJQA2kxT8UYpiGYop+KTFFwG0c5p2KWi4xmKMU7FGKLiG4oxTgKMUXCw2lxS4oxRcBuKXFLilpgNxSYp+KMCgQ3FGKdiii4DcUU7HtS4ouAzFGKfikouMTFGOaXFLilcBuKMU7FGKdwGYoxT8UYNFxDcUYp2KMUwG4pcU7FGKAG4oxTsUYp3AbijFOApcUAMxxRin4pcUXAjxS4p+2jbRcBmKMU/bRt5ouAwClxT8CjFK4DMZpcU7FGKLgMxRtp+KMUXAZilxTsUYp3AZijFPxRii4DMUYp+KMUXAZijFPxRii4DMUYp+2jbRcBmKMU/HNIBzRcQ3FGKfijFFwGYoxT9tJimA3FJin4o20AMxRin4oxSAZijFPxRigCPFLin7aNtFxjMUYp+KXFK4DNtKFp2Kdik2CQwLShakApQhqHIpIYFpdtShKXgCpci+UjCcU4J6U7d7Zow7e1Q2yrCbRmkPtT9gz8zUEovfNK4DApNKFFKZPQU0s3rTswuh2KQkDqaiJ96Mj0zVcouYfuz0FMJ560ueKTFNIlsM+gpPqaKMc1VhXDIyaACaXFO+lADNnqaUBRTsE0oQmlfuFuw3cewpQrE808IAOaduAHAqebsVbuKFbFFO3+1FTdjsjzX+0POMkbkKsZO0pwGP0/Sp7PURHcL5qPllA+U4A9K4qO7ZLh03EfMfxrS07WL9p/LgdVaQ7Qdg69s5FeJBWldna9rHqsLGSFGZSrEcqeop+KzNFtdQUebfeYXZAAXOc/4VrFSO1e7TlzRuzhkrMZikxTyKTFWSNqGa5igIDt19BWZfa35F0I48FQfm5rntSvzPKZUnUBjjG7p7VwVsdGOkNzaFFvVncLhlDAgg9DS4rm/D2srJI1pIXIP3GI6/4CugW4iZwoYHPQ11Uq8ZxTuZyptOw/FLinY4oxWxAzFGKfiigBmKMU7FHekA3FGKdRRcdhoFGKdijFFwsNxRinY70uKdxWGY9qMc0/FJii4hMUYp2KXFFwsMApcU7FGKVx2G44FGKdilxQAzFGKdjmlxTEMxRin4oxQA3HFGOKfijFFwGYoxT8UmKYhMGjFOxRigBuKMU7FLincBmKMU/FGKLgMFLTsUYouAmKMU7FGKVwG4oA5p+KAKLjsNxRtp2KUClcBm2jbT8UYouFhmKNtPxRii4WGbaMU/FJincQ3FGKdilxRcBmOKMU/bR9KLhYZikxT6MUXAbijFPxRii4DMUYp2MUYouA3FGKcB1oxTuA3GKMU/HFJii4DcUYp2KMUXAZilxTsUmKLgNxRinhTS7KXMOzI8Uu2pAop2BipcxqJDtp2w1J9KT6mlzMdkN2AdTS4UGl4zRmlqx6BnHagZ+lNyaTNHKHMScdzSblA6UzrQBRyhzdh5k9BTS7Gk4FGeOlFl2C7FwSeSaOFPSkyaMGnbuK4pb2pp5pcUYoVg1G4oxTgopwGO1DYWI8U7aRT8fQUbR60uYdhmKKfj8qMUXCw0Ak9KXb+FGaM0aj0HDA7ZoycdhTcmlzxS5QuLx9aMjFN4oo5QuS7qKSilyhc8BvEWK8m2nA3Er3FMgvWiIymcOH645FaFxtEjokUi3HmEDP3ee1ZMsLwSGNxtkQ4IHavFO89Q8FeI5b6R7S4kYnlkDc49gf6V2mQR0rxnwz4ivtKuvJiERilcbt6A7fU5r1u0vIL2HzLeUSKDgso4zXpYaalGzepy1Y2dyzsBrLv9WhtXaFfmkHByeBV26ufsls8xBIUZwK4O7vkurpio2EkjPT8ayxuJlSSjDdhSgpasLuOe5eSVGRg3OS3WqcFmIQtwW9VMeM5NQ32oCNIyieaPu4Hf3qr9uuRA9wxdU5Cg9c/SvJUpST8zq2NgmJHjBYqFGRsPOfcVMl80PlkupbdwB1571zV7eITlnAuNqkOp455IqUDdDFLLcEIVycdadNOOoPU9O06+S9hO3JKcE5zV6uJ8GXhk1B7ckldpK4HH412txJ5ELSEdBwPWvdoVeanzSOKpC0rIXFJXMXPiQyR7Y9qMp5Gas6XrkU0qxSSZdhnAHX3rNY2Ep8q2H7FpXN4jmkxT8UmK67mY0CjFOpcUrgNxRinY4oxQA3FGKfijFFwsNxRT8UmKLhYbilxTgKMU7isNxRin4oxRcYzFLinYoxRcQ3FLinYoxRcLDcUYp+KMU7isMoxTsUYpgNxRin4pMUxDSKOtPxijFAhmKMU/FGKLgNA9qMU4CgCi4DcUYp2KXFAxuKXFLijFIBKKXB4pcUANxminYoxQAmKXGKWigYmKMUtFACYo206jFFwGbaMU/FJii4WG4oxTscUYouFhmKMU7FGKLhYTFGKfg0u3mi4rEeKMVJijFFwsR4oxUmKMUXCxHijFSYpMUXCwwik21JijFFx2GBeaXAp2KTFJjQUAUuMUnalYLhSGlpMUWC4Z96TilxRimFxv4UdadijFAhmCaXbTsc0uKLhYYBRtNPpMUrjshhFGKkwAOaQ0rsdkNxzR3paWmA09aMUuKMUCEpaXFGBQMb2op2KKBDTk9aMU6jFMBuKMU7FGKAG4oxTqMUCExRiloxQMfiinYopAeJyCVoiMFcucMvIc+v8A9aqD2EshbfjzQ3KEEMv4VuQQar/aD6RJsjSZwzyKmWAAJyP/AK1VA1zPbTSwguIm/fSIpMmR0z6ivG5T0LnObCkhBI4OM9q960qzhsdJtYbeNUjEYOFPGSMmvD51HmfKSUPJPv3xWx4e1/W7CUx2LiSBivmLKMqvofatKFWNNtsipByWh6F4j1u2tIntHfEhx05/P2riJJYpJVdkYyZDFQ2FA9fen63etqN7JcMixu2FYZyMj0rFj+0yiQPMAu7Zj071y1p+2m5DhHlVi7Kkccm8u0TuD97kfpVCMOk4mkuvkBzjBIGafdTxLa/Z4iN+eS3r65rKaWSXChugx9amEdCy9dNHdMm7y49ifKVH+sPbPpTZHMUSKWbgYBzVADaQQcc1oWkRnxEwMm4/Ljn61drIDsvArvaXbHOPNjfLtgjIGRg1VudduJbl0mmlKDLFWOcfT0qjJdmBEC5KxqERAe/vVG6tnMsSAkFic7WyfX8KnncoqLJtrcfd3EszgxRv5cjDPGMelXbO8uob+JooYp443AUDqCT3qlNc+TbxRgsiGMlCTxnNUra4MUivGS9wrDYPU59O9EF1Ge5hG2gt1xzSYptnPNNY28s6hZnjDOoGMGps+1e4pOxxNEWKWn0lO4htFOxRilcBAOKMU6igBMUYp2KMc0DG4pcU4CgClcLDcUoFSKoNPCDFLnK5CDbRirHl56UGI0vaIORlfbS7an8o+lHln0o9og5GQYoxU/l0eXVKohcjIcUmKnMftTSlUpolwZFtoxUm2k21VybDMUuKfijFO4WGYoxT8UbaLhYZijFPxRii4rDcUYp2KXGaLjsM20YqTbRtpcwWI9tGKk20FTRzIfKyPFGKftNG3mjmQuVjMUYp+2gijmHykeKKeRRincmw2lzS0Y5p3ASkp2KMUrgJR2pcUmKLgGBRjNLijHFAwopaMUCEopaKACkp1FACUmKfijFLmQ0hhoxT8CgilzD5RmKMU7FAGKLhYZijFPxSYouFhuKKdikxTuIbijFOxRimA3FGOafikouA3FGKdijFADcUlPxRikAzFGKfikxQA3FAFPxRQA3FGKdiigY3FGOKdRigQ3FFOxSYp3AbRTsUuKLgMop2KMUANoxTqKVwExSU6kouA/FFOxRSuVY8gj1e9s7pLnygkygiIMMhl6nrU9t4nlsrmWaOO3HmqFaLZwD1zisbVNTu/tLwXSLutyYyqjG3r+VZaXEiqzg/Mf4j7+teLdxfus7rX3Oo1LQoJbeO9iukEMiM3lgHaJOpUelVY5LSx0gxpMonLHMhXG5fTNZNrdSiCQSu3kjGc8gnsKiPnTwnBLKg4z2HpSl7wWNEgXMTytnaRwwYHDfSmB4UZRdOGbAQ442980WsP2CEySyBZH7EZAH+NVLiN5nkkGw4XOSeSP8AGs1ZsZQmc7+CSD3NOhiYvnGFP8XpTJgcqwxg981ZiZzBkMMZxt71oAyO2M1wsGRknIzxXS2yrbobfZEqtwdo5x9ayLC4ZUuGBHmED5jzwO1WIGbyvNljeR5B+7AHG3/9dZTV9GBckVbydVWLYRjbz29KsW0EEM7SOokZuF3DOPwqrZWU3mNclxGCPmi5yPerhO3fvjO0sCMnGRj0rKT6JhexBqggktUBiLKjEkoMc1DoV75HiK1d9PjunbakabsbT61PNPFf27WyqI0GPnB5qLT3t9E1uxuixuoVfDleGVv61tQdmkwlqj2Egk5Oc96TFKCGAYdCMilr3LnFYbilpaKLisJiiloouFhuPalxS0UrhYMUAc0U4Ck2UkAWnCPNAp6k5rN3NFYUR04JilU5FPHSobZSQgFO209Vp4TipbKsQ4o2n0qzsFIUFK47EAHPSlwMVKY6aVxTuKxEw46VGVqxspPLFWpEtFUrSFcVZKUwr7VamyHFEOKTFSFTSbeatSIcRmKMU7vQBT5hcozFLipABzTJn8qFnABIxjPucUucfIIBSgVJt5pQlLnGojQmaf5WKeFIHPFHTpUOTLSGbMUbRTyaZnJ5o1ANooKCnDFHFFwIjHSFKlOCKaTVJslpEZSkIp56UmM07sWgzFJipMU3HtVpktDcc0Yp+0ml2GnzonkZHijFSbD6UbKOdD5GRYpcVJtoKUucXIyOlxUmyl2Ue0GoMix7UuKlCZp3letL2g+QgxShan2ACkCik5jUCLbigiptnFBTPap5iuUhxRtqXbgYFHlk9TRzBykOKSpig6YphWqUkS4sjopxFNq0yGmJS4oop3FYSlxRRii4WEpaKKLhYTFGKWii4BikpaQ0XAQ0mKWii4CUuKUUd6LgGKTFOoxRcdhMUYpaKLgJikxTqQ0XATFGKXFFFwG4opTRRcBKKMUtAWEoxTu1GaVwsO5op240Uhngmu3H2/UAbe2SFFUJtT+Ijqx9zWdsmii2vkIx5XNa9oim7ktztaHeQ75AZR649qq3lokUzbGLoeF2nOT715DZ3IbFbzRxvlBIhH3R1U9qbNcPBKFaJTnnp3q3Z200IR0lAc/P5bnHTtmkvIxPMCAQoAYnH6fSs+ZXAPMgMnmSyKY1UBU64OP5VTh2nzyvl7h3bOMd8VeuLlFQJHEhOOsi/NiqQiMaBPMBSQ5OOuRREEVZLbZAJDIpYnGwDJ/OrukWkMsshlY71HyID1qGa2ZU3qMouM7egz61p2Ey2+nRssYVmLZYjk05SaWgCPowM6mKQZDZwP5GtKWcW7xIQURD09B6VkTXW0qsUo3Hk4GOfSppN09rl1+fII+bPSs2m0uYGSrdt55kklcAHCjHOahmuYrqSHfIYlxgnP4H8aFUyxPIIABj5cnHI71khkKOWY5AwoA704xVwNR5ILVQUyZNuNxPGfcetU4rx0uo5tqyBHDbGHDe1U1uH2BTzg5p4fbEzB8SZxt9Qa1jGwHvthKLnTradYvLEkasEByF46ZqfHtXnHw6udTm1HyzLJJp6QnK7vljPbj1r0qvRpz5o3OaUbMZRT8CkxV3FYTFG2lxSikMbto206jFFwsJilxTsc09QM0rjsRgUtShaNvtS5h2GrUinFNCH0pdpxSdg1JQ/FPD1BginCoaLTLAanZFQjNOFKw7kmRSdabijFFgFyKbmnAetLimIjo2ZqSigLERjphjqxSHGad2JpFby6CmKsECk25p8wuUg24zVe6GY0XH3pUH65/pV4qKr3ABuLVfWQt+Sn/GnzCsSbaeopAKdwO9JsdhrdKTHHWlPIpOaa2EN5Jo20vFHPancQAY60nWjk9TRQA0j0pMcU+incViMigCpKQ07hYbjmilNJigAzS5pNppQKAQo5FLikHSl7VIw20uABQBTsZHWk2AgxRgA0Ypw+lAxVGfSlwB1pKYxOaW4Diw6YpVVcZJpg7mmljTsFyUlR6U3cD9KiJpAarlFzFg7RTS4zURNNo5Rcw9nANRls0h60lNKwrgTSZo70mD6VSZIdqKXmkp3CwtFKKGp3FYbRSE89KXGaOYVgopcYpcU7hYSkp2KMUXCww0lPxSYpXATFLRijvRcLBRS4paLhYbRTqSi4WEopaSncBKSnYoouA2jFLkUZpXCwYoxSZFLmi4WDHFLim5ozSuOxNiikzRS5h2Pn6S5n+1ZRV3JIT93r6ZrRi1p7BnlXabiX74KgqufSs1/wBxcOyqGYOSVPrUYha4ky+UB6sRxXk3tqdjNGU+dbRndl3+YknJzTRdbY/Lm+Y9OnWltbcI6bLjEacE7CfwzSGWFZGcMiDnjGc1ncRDIkqfOkZPuOT9D6Cq+7zXVCm8kZ4HIqea93rsVwEHGAOppYoolBmWRscZw2Me2KpXtqMvfZrdLQI8ZZ/49rYye1JPvwIxwgAwhwD+NRXQlRDKN20kEsDwBnvVa5klltzLkEA4Jz1x6VEVcNxJLJGZgSpk27jhsBf8aIlGVhkDhW6u3GB7VTj/AH0kYDFWJwfX61YMkki+QjFVj7MeprWzAuecZrRWR2kEbY2jqB2zWXdAzXREaqGOOF6E1aTapiJYopGZADjcaZNNEyx/Z02ELglj3z+lCjZgQeWreUsS7nA+YetS2VlLe3L7YpGjjG6UqM7VqWwk+yNJMGAkdCinOdvvUxlntXlAmXMhDNGrZDdwePrVAeveGYrWDQLQWsSxKyAsMcsfU+ta4Oa4DwFdSSTyJNG7sUykpYkBfTn3rvVNd1OV4owktSSgDmgdKUHFW2IAtO2Um+lD8VN2NWDy6PL5pfMpd9K7HoJswacFpN1KGpXYaDgKdim7qXPvSGOHSj60maUGgdxKXpRS0AKOtOB5pveloAkFLmmUUDHE0c+tNozQIUjim0vaigAyelJj3ozSE0CHd6Pxpu6jeKLBcXFV3OdQgXH3Y3b+QqbfVdX3apJ6JAB+bf8A1qLCuWeTQBijNHJpgBBNGKXFJzQAh60nNO20uKdxWGbaNlPwM0oHoKXMOwzZRs4qQDjmjgUXYWGbKQp7VLnIo4ouwsRCMk07yxTyaQtRdsLJDdgoEdKGNG6jUNBBGBSlFFJvJPFJkmjULoXAxxRtpoJFKWNGohTgCjPpTcknGDj1pc0AISaSnAUEU7gM7Uh9Kd2oxnmjmCwzGRS7eKeB70hNHMFhhWggetKRxSbaOZhYNoNGwGloouFhNgpNg9aXNITRdgIVFJtHpTgKXAp3FYbj2prDipDTCM0XCwzbQBipAKX5fSnzBYYMk4p2zA5NOyKTOaOYLITaPWjAxS5ppNF2FkNI9KTaTTs0FqLsLIbsNLto3UbuetO7FZBto20bqTJNGoWQuBTcDFGDRjNMBDRTgvtQQKLhYbu9qQkk9KXpRRcLDdppOafmjPNFwsMxS4GKdQBRcVgCHFL5ZpRTuaVx2H+WaKXmilcLHz2wZZZt2MMSM+vNPMpi2usjsvdEokZLl2VmwxY9wAKmt3SKPCx7JCcDnOcf0rymzpEliby9ygqGbO0HpUF1aqg3xl1LAcMOtX/NSWR1dSvcgtx+FQSxXEzBVkjKZwec4qE2CKUsCIqlSuT1xVZjsfnAHcVcks7iNx8rNzwR0NMFrG8sYkJCnJYjrx2rRMdghmLPh9xU9ADzUYSN8hpmXL/c2Zx71ZSFCjsA2yPH8QyD6VDNEiT7lYtnqQf0ppisOtLUbpZcSMifdI/iNQqAt2DkDceQeAv1q7cXEgjEEajOARt7fjVeO3uNQ8+REDPEu9vmAwPXnrTV2A64kWWHCHaSx3cAAnPG0emKqFHcrGoG/OORj9a0GhmeKNHUqNv3G6k+oqRbSVFE7neiEKyk547Zp3uMrJaRW4ia5ZlLDOV5C/UVFJl32hhhm+/0HNT6hOtzHDBb2AhkDH/Vksr10OneHNNXSZLya6ElxBtdoXXaNp6g+v4VVr7CO98OaPHo+logIaWRQzsOh47VsCuXi8X6fp2nWySWlxHkYjQj+HPBz6Vv6ffw3yNseMuvJVDnA7ZrqjJJWRm46l1TxQTSrjpS4q+YnlGcmnCl/CilcOUKUCjj0pc0rj5Q5p1FKDRcLCUuaXFLxRcLCA0oakzSigBc5pd1JRQLUdupd1R0uaAux+40bjTKM0xXHg07NR5paQ7jw2KC9MpKAuOJ4oz702lGfSgBRzRijnNKAaLhYQCoYBm9vG9NifoT/WrG2q9mMvdv/enI/IAUXGkWqKAKXpQOwYo4oJpM0gF4oFJmjIoAUmjNJSE0wFz7UUgpaBBmikzRmgBaKTNJuoELRTcmjJoEOopv40UDHHBpMCkooEBopM0GmAuaKbRQAuRSZozTS2KLBccTxTc00vxTQ3NAEu6imEjrSbqAuObrTc4NNZ+aAeaLBcfmgGmgmnU7BcXNGTSUuKYDSabnmnleKTAo0EJkmjJp3HpRgUXAjLGlGcU7GaUCi4DeaTBNPoouBHtPrS7OOtONFFwGhOaXaBSmkoAMClpM0UwCiiigApCKDSE0ABx6U00E0maAFxRSZozQAuaKTdSZoAeDS5qPdRuoAnzRTd1FID5/S2maeWSNBuVj1FIsj28uZE3Y+8BVpbgh5UZSgLltw6mop51l/eA4Hcle/vXlXd9ToJ4ru3kRgCY2IwzE9PpVIyvFIGGDzkr2ajYzbofliXP+sPSq5YAhV3+2T3pqIWNQ332zAZthPTkgA+tQtEkbssjgkjGYxn+tUA58xdjFOxx+tW9kcasGWQMGxnOP0p2tsNE9sYlUh2BllO3Gfuj3ptymJ5PLYLk8Y71Wb+/vy3Y4qaOUBtwcKfuknuKSWtwIJ0HyKgkyuB5hGFyatwusEGPNkA2kSJtH489xUqXH2TERjZkDZ3A4BOOP51ReeVg7BCRzuA6Va20AsvMLqQspZMj5cnP60llHPcuyRXKh8fLGWxv9hUy6ess0cdtvyQFxnJDYycD0rVj0SC1JLRyiaMbvKZxuGO+fQn0pxV9QZv6Poa6dC6SRyCfaXJnYBAW4wD61bu9Dhtx5nmkyzqFmWNOHI4yuOmPSuK1q7vL1PtXnNAkGI/LdiHXPI49D61d8O+JbuA21pckR2zygG8x8+PTP6VqmtiS/J4euZpJDNcxpHvKmMtg5x8uMdKk0bUZPDN+1lNbJcXVyRlY2wQO31rpL4Wv2KWaCbynkIIY4Dbs8Dnsa46yvLi1vZ7v7Is13uMZZlBDt2wMcMPaqaswvc9QQlkDMuxiMlfSng1xumeNNskNpqlvMkrfJv2/MWz3FdfWikmQ0PJ4oyaaDxRTAeDTwajHFLuoGSZpRUYalDUASZpaYDRmgQ4U7tUYNLmmIfSimZpc0AOxRSZ5ozQIdRimg0oNADqXGKaDRmgLjqQ03NLmgLjuKWo6XNIdx+aUGo80ZoC5IDzVbT2BtS39+WRv/AB4/4VIWCgkngDNVtLbOk2rZ+9GG/Pn+tAXL+6jNMzSUwuPLUm6mUhpCuP3Um6m55ozzTC4/dRupgNLQK44MaNxpmaXNMLjsmk3GkzRQIXNJmiimAuTRmkopAOBozSA0UAKaSjNIaYBmjPNN3UhagBS1GaYWAo3UAPzTTTd1Jmi4C0YxzTWOKXeCKVwHZ7UGmhqXOaLgMI5p6imHrT1NADwKcMVHmjdTAkzxSZpmaN3FFgHk8U3NJnikJosA7dzS5pmaM07APzRmo91GaAJM0mabu4pM0AOzRmmZo3UWAfSZpu6kzTsA/NFM3UhbFAEmaTNMDUZoAfmmsaTNJnNFgAmkopCaLAOpM0maTNMB2aTPFJmkzRYVx2aM+1NzRmgLk2aKbmigZ4ncpGWfcpdtx5A5qXbGiomI9zHJyMYPrUJL3F0WxtjRtrtjnrUqR21uSZbgzFm5CnGfpmvGfmdBXv1RQigKUb+IevpWSFdHBAJzwPUVuT2qXCM5kMSqeCxx+AH9ao2ZEN0yqsYZQTuckgY/rVxegGeYn3PvIBU8g+tWhNIsJU5KNyTjv2pz2c7SmSRvkDDex45pkoMNiELbizsSQM8DpVXuUheqou75u+fWm/Y5ZGOzLAcY9KgjdmXLfdFXIL1oQUyADyaHdbCBRKp8uYfcHyjNDSvEj7GZPMXDqh4b61Dcy5nI3YU/dwc5ohUxtvlI4yDEwIP0oQXL2n6nPaMfLlKO42sxGcD2BrpraC2mvJrm7uGxGFChFzuGOPp9DXEvbyRqrO43E524yQPWrUU985PlyO6MfwaqTFc7eU2c8M1ndrEkRAbdIRv3HocjtyOO1Z1zp1rYWiJfKs+JBG4jO5ef4kPckVi29+I5w80pQxONx2bsjv8AlXe6LpmkanYw3ARy8ykBXc53ZzkDsauPvBsR2ulWtxpirlthwI5GT94R/dB6CrlrpL2kYHkmRVHVmLOPcnua37e1jtbdYI1wi9ATnn1+tTdOlbKJHMclb+HrMa/FNd208k5xIrI5aNTn+LPc+ldaTQOpppNUlYNx1FNBozQA/NGabml3UXAdmlzTQaWlcY8E0tMB5p1NMTQ7NGeKbS0yR2eKUGmZoJoAkzRmmZpc0xDs0A03NIDSAkzxRmm5oB4pgOzxRmmk0hNADs0uajzRuoAkzRu5pgNGaAI76Qpp10+cFYXP6GnWaeTY28X9yJV/ICqmqn/iU3K93UJ/30wH9av5x07UuoD93FGaZmjNMB5NITTc5ozQAtAOaaTzQDigB+aM0lJmgQ7NGabmk3UxD80ZpmaM0APzRmmZ5ozQA/NLmos80u6mBJmjNR5ozQA8tTS9MZuKYHzRcCQtTN9FNI5pAKWzRk5pMYooAdzTc0pNNNACk8U3ODTC1C80ATZ6U7NRg07NMBeDTl4GM0zNGeaYD80mabmkzQA/dRmmZpM0ASbqM0zdRmgB+aMmmZoyaYDs0mabSZoAfupN1N3UZoEOzS5pmaQtigB+aM1HvzSFj2oAkpOtRbyKUNmgY/pS5qMNRupiJCaTNR7qN1AElFRg0pNADs0ZptJmgBSaUdKZmjdQA+kJ5pu6kzQBNRTaKQ9TxqaG2e73wlo2bO0hyS59/QCpbO2e2mincM7Kf3QQ5389fpUbskFzLKrsrlijZPPPXp600akLSUEyIcAD92cbQO35V42r0RuLfX7utwhZThhjdjp6fhVe0vUjbbLISpX52UDk1DdKt5Op5Zj83zHAb8azZXC/KdrHttz8tXGCtYDeYxy7F8xrhc73VmIDisySGAS7FaSONgSO/NBmWNolXJOR98cH2qWXT7hr4IrRoTgl2bofamtBl9olkRS8aZZQ
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

唐 城

小朋友,你是不是有很多问号?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值