使用Trigger.dev实现AI客服自动回复与内容审核并行处理
在现代AI应用开发中,如何高效处理用户请求同时确保内容安全是一个常见挑战。本文将介绍如何利用Trigger.dev平台构建一个能够并行处理客户咨询和内容审核的AI工作流。
并行处理的核心价值
并行处理(Parallelization)是一种让多个任务或流程同时运行而非顺序执行的工作模式,它能显著提高资源利用率和整体执行效率。在AI客服场景中,这种模式特别有价值:
- 响应生成和内容审核可以独立进行
- 减少用户等待时间
- 提高系统吞吐量
- 确保内容安全性的同时不牺牲响应速度
技术架构设计
我们的解决方案将包含三个核心组件:
- 客户响应生成器:负责生成专业、有帮助的客服回复
- 内容审核器:检测用户输入中是否包含不当内容
- 工作流协调器:管理并行执行并综合结果
实现详解
1. 客户响应生成任务
export const generateCustomerResponse = task({
id: "generate-customer-response",
run: async (payload: { question: string }) => {
const response = await generateText({
model: openai("o1-mini"),
messages: [
{
role: "system",
content: "You are a helpful customer service representative.",
},
{ role: "user", content: payload.question },
],
experimental_telemetry: {
isEnabled: true,
functionId: "generate-customer-response",
},
});
return response.text;
},
});
这个任务使用AI模型生成客服响应,系统提示设置为"你是一个乐于助人的客服代表",确保生成的回复专业且友好。通过实验性遥测功能,我们可以跟踪和分析LLM的调用情况。
2. 内容审核任务
export const checkInappropriateContent = task({
id: "check-inappropriate-content",
run: async (payload: { text: string }) => {
const response = await generateText({
model: openai("o1-mini"),
messages: [
{
role: "system",
content: "你是一个内容审核员。如果内容不适当或包含有害、威胁、冒犯或露骨内容,请回复'true',否则回复'false'。",
},
{ role: "user", content: payload.text },
],
experimental_telemetry: {
isEnabled: true,
functionId: "check-inappropriate-content",
},
});
return response.text.toLowerCase().includes("true");
},
});
内容审核任务使用相同的AI模型但不同的系统提示,专门用于检测不当内容。返回值为布尔值,表示是否发现不当内容。
3. 主协调任务
export const handleCustomerQuestion = task({
id: "handle-customer-question",
run: async (payload: { question: string }) => {
const {
runs: [responseRun, moderationRun],
} = await batch.triggerByTaskAndWait([
{
task: generateCustomerResponse,
payload: { question: payload.question },
},
{
task: checkInappropriateContent,
payload: { text: payload.question },
},
]);
if (moderationRun.ok && moderationRun.output === true) {
return {
response: "抱歉,我无法处理此请求,因为它包含不适当的内容。",
wasInappropriate: true,
};
}
if (responseRun.ok) {
return {
response: responseRun.output,
wasInappropriate: false,
};
}
throw new Error("处理客户问题时出错");
},
});
主任务使用batch.triggerByTaskAndWait
方法并行触发两个子任务,并等待它们完成。关键处理逻辑:
- 首先检查内容审核结果,如果发现不当内容,立即返回标准拒绝消息
- 如果内容正常,返回生成的客服响应
- 处理任何可能的执行错误
测试与验证
要测试这个工作流,可以准备不同场景的测试用例:
- 正常咨询:如"如何设置双重验证?"
- 技术问题:如"系统报错500怎么解决?"
- 含不当内容的咨询:包含侮辱性或敏感词汇的问题
测试时,系统会同时执行内容审核和响应生成,并根据审核结果决定返回哪个响应。这种设计确保了即使用户输入不当内容,系统也能优雅处理,而不会暴露原始生成的响应。
性能优化建议
- 模型选择:根据实际需求选择合适的AI模型,平衡响应质量和成本
- 缓存机制:对常见问题可以引入缓存,避免重复处理
- 批量处理:对于高并发场景,可以考虑批量处理多个用户请求
- 监控与告警:通过遥测数据监控任务执行情况,设置异常告警
扩展应用场景
这种并行处理模式不仅适用于客服场景,还可以应用于:
- 用户生成内容(UGC)的实时审核
- 多维度AI分析(如情感分析+关键词提取)
- 需要同时调用多个API服务的复杂业务流程
- 任何可以分解为独立子任务的工作流程
通过Trigger.dev的工作流管理能力,开发者可以轻松构建复杂的并行处理系统,而无需担心底层基础设施的管理。这种模式特别适合需要同时满足响应速度和内容安全要求的现代AI应用场景。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考