使用Trigger.dev实现AI客服自动回复与内容审核并行处理

使用Trigger.dev实现AI客服自动回复与内容审核并行处理

trigger.dev ✨ Trigger.dev is the open source background jobs framework for TypeScript. With features like API integrations, webhooks, scheduling and delays. trigger.dev 项目地址: https://gitcode.com/gh_mirrors/tr/trigger.dev

在现代AI应用开发中,如何高效处理用户请求同时确保内容安全是一个常见挑战。本文将介绍如何利用Trigger.dev平台构建一个能够并行处理客户咨询和内容审核的AI工作流。

并行处理的核心价值

并行处理(Parallelization)是一种让多个任务或流程同时运行而非顺序执行的工作模式,它能显著提高资源利用率和整体执行效率。在AI客服场景中,这种模式特别有价值:

  1. 响应生成和内容审核可以独立进行
  2. 减少用户等待时间
  3. 提高系统吞吐量
  4. 确保内容安全性的同时不牺牲响应速度

技术架构设计

我们的解决方案将包含三个核心组件:

  1. 客户响应生成器:负责生成专业、有帮助的客服回复
  2. 内容审核器:检测用户输入中是否包含不当内容
  3. 工作流协调器:管理并行执行并综合结果

实现详解

1. 客户响应生成任务

export const generateCustomerResponse = task({
  id: "generate-customer-response",
  run: async (payload: { question: string }) => {
    const response = await generateText({
      model: openai("o1-mini"),
      messages: [
        {
          role: "system",
          content: "You are a helpful customer service representative.",
        },
        { role: "user", content: payload.question },
      ],
      experimental_telemetry: {
        isEnabled: true,
        functionId: "generate-customer-response",
      },
    });
    return response.text;
  },
});

这个任务使用AI模型生成客服响应,系统提示设置为"你是一个乐于助人的客服代表",确保生成的回复专业且友好。通过实验性遥测功能,我们可以跟踪和分析LLM的调用情况。

2. 内容审核任务

export const checkInappropriateContent = task({
  id: "check-inappropriate-content",
  run: async (payload: { text: string }) => {
    const response = await generateText({
      model: openai("o1-mini"),
      messages: [
        {
          role: "system",
          content: "你是一个内容审核员。如果内容不适当或包含有害、威胁、冒犯或露骨内容,请回复'true',否则回复'false'。",
        },
        { role: "user", content: payload.text },
      ],
      experimental_telemetry: {
        isEnabled: true,
        functionId: "check-inappropriate-content",
      },
    });
    return response.text.toLowerCase().includes("true");
  },
});

内容审核任务使用相同的AI模型但不同的系统提示,专门用于检测不当内容。返回值为布尔值,表示是否发现不当内容。

3. 主协调任务

export const handleCustomerQuestion = task({
  id: "handle-customer-question",
  run: async (payload: { question: string }) => {
    const {
      runs: [responseRun, moderationRun],
    } = await batch.triggerByTaskAndWait([
      {
        task: generateCustomerResponse,
        payload: { question: payload.question },
      },
      {
        task: checkInappropriateContent,
        payload: { text: payload.question },
      },
    ]);

    if (moderationRun.ok && moderationRun.output === true) {
      return {
        response: "抱歉,我无法处理此请求,因为它包含不适当的内容。",
        wasInappropriate: true,
      };
    }

    if (responseRun.ok) {
      return {
        response: responseRun.output,
        wasInappropriate: false,
      };
    }

    throw new Error("处理客户问题时出错");
  },
});

主任务使用batch.triggerByTaskAndWait方法并行触发两个子任务,并等待它们完成。关键处理逻辑:

  1. 首先检查内容审核结果,如果发现不当内容,立即返回标准拒绝消息
  2. 如果内容正常,返回生成的客服响应
  3. 处理任何可能的执行错误

测试与验证

要测试这个工作流,可以准备不同场景的测试用例:

  1. 正常咨询:如"如何设置双重验证?"
  2. 技术问题:如"系统报错500怎么解决?"
  3. 含不当内容的咨询:包含侮辱性或敏感词汇的问题

测试时,系统会同时执行内容审核和响应生成,并根据审核结果决定返回哪个响应。这种设计确保了即使用户输入不当内容,系统也能优雅处理,而不会暴露原始生成的响应。

性能优化建议

  1. 模型选择:根据实际需求选择合适的AI模型,平衡响应质量和成本
  2. 缓存机制:对常见问题可以引入缓存,避免重复处理
  3. 批量处理:对于高并发场景,可以考虑批量处理多个用户请求
  4. 监控与告警:通过遥测数据监控任务执行情况,设置异常告警

扩展应用场景

这种并行处理模式不仅适用于客服场景,还可以应用于:

  1. 用户生成内容(UGC)的实时审核
  2. 多维度AI分析(如情感分析+关键词提取)
  3. 需要同时调用多个API服务的复杂业务流程
  4. 任何可以分解为独立子任务的工作流程

通过Trigger.dev的工作流管理能力,开发者可以轻松构建复杂的并行处理系统,而无需担心底层基础设施的管理。这种模式特别适合需要同时满足响应速度和内容安全要求的现代AI应用场景。

trigger.dev ✨ Trigger.dev is the open source background jobs framework for TypeScript. With features like API integrations, webhooks, scheduling and delays. trigger.dev 项目地址: https://gitcode.com/gh_mirrors/tr/trigger.dev

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆滔柏Precious

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值