KeyBERT:利用BERT进行高效关键词提取的开源之旅
KeyBERT Minimal keyword extraction with BERT 项目地址: https://gitcode.com/gh_mirrors/ke/KeyBERT
项目基础介绍及编程语言
KeyBERT,一个由Maarten Grift发起的开源项目,是关键词提取领域的一颗璀璨新星。这个项目基于Python编程语言,巧妙地融合了现代自然语言处理(NLP)的力量,特别是BERT模型,为用户提供了一个简单而强大的工具,用于从文档中自动抽取最具代表性的关键词和关键短语。
核心功能
KeyBERT的核心魅力在于其能够通过最小化设置和操作步骤,实现高效的关键词生成。它利用BERT嵌入来捕捉文本的深层语义,进而识别出最能概括文档主题的子短语。通过计算文档与其内部各个N-gram词组间的余弦相似度,KeyBERT能够准确选取那些最“贴近”原文档意义的词汇作为关键词。此外,支持自定义参数如n-gram范围、停用词列表以及使用不同的嵌入模型,使得定制化关键词提取成为可能。
主要特性包括:
- 基本关键词提取,直观易用。
- **Max Sum Distance与Maximal Marginal Relevance(MMR)**策略,提升关键词多样性。
- 支持多种预训练嵌入模型,如Sentence-Transformers、Flair、Spacy和USE,适合多语言应用场景。
- 简洁的安装流程,一行命令即可开始使用。
最近更新的功能
尽管我们没有具体日期和详细更新日志来说明最近的具体更新点,但KeyBERT的活跃社区和持续维护保证了它跟随着NLP领域的最新进展。一般而言,这类项目的更新可能会涉及以下几个方面:
- 兼容性增强:确保与最新的transformers库和其他依赖项兼容。
- 性能优化:提升算法效率,减少提取关键词的时间成本。
- 新增模型支持:可能增加了对更多预训练语言模型的支持,以适应更广泛的场景。
- 用户体验改进:简化配置流程,提供更加清晰的文档和示例代码,帮助新手快速上手。
KeyBERT通过其在GitHub上的频繁交互和反馈循环,不断进化,旨在提供更加智能化且易于集成的解决方案,让开发者和研究者能够轻松利用先进的NLP技术进行关键词提取。如果你致力于文本处理或者信息检索工作,KeyBERT绝对值得加入你的工具箱。
KeyBERT Minimal keyword extraction with BERT 项目地址: https://gitcode.com/gh_mirrors/ke/KeyBERT
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考