SASRec 项目下载及安装教程
1、项目介绍
SASRec(Self-Attentive Sequential Recommendation)是一个基于自注意力机制的序列推荐模型。该项目由 Wang-Cheng Kang 和 Julian McAuley 开发,并在 2018 年的 IEEE International Conference on Data Mining (ICDM'18) 上发表。SASRec 模型通过自注意力机制捕捉用户行为的序列模式,从而提高推荐系统的准确性。
2、项目下载位置
你可以通过以下链接下载 SASRec 项目的源代码:
3、项目安装环境配置
3.1 环境要求
- 操作系统:Linux(推荐)
- Python:2.x(项目代码在 Python 2 环境下测试通过)
- TensorFlow:1.12(项目代码在 TensorFlow 1.12 环境下测试通过)
- GPU:推荐使用 NVIDIA GPU(如 GTX 1080 Ti)
3.2 环境配置示例
以下是配置环境的步骤:
-
安装 Python 2.x:
sudo apt-get update sudo apt-get install python2.7
-
安装 TensorFlow 1.12:
pip install tensorflow==1.12
-
安装其他依赖库:
pip install numpy pandas
3.3 环境配置图片示例
4、项目安装方式
4.1 克隆项目
首先,使用 Git 克隆项目到本地:
git clone https://github.com/kang205/SASRec.git
cd SASRec
4.2 安装依赖
确保你已经安装了所有必要的依赖库。如果需要,可以使用以下命令安装:
pip install -r requirements.txt
5、项目处理脚本
5.1 数据预处理
项目中包含了一个数据预处理脚本,用于将原始数据转换为模型可读的格式。你可以使用以下命令运行数据预处理脚本:
python preprocess.py --dataset=Video
5.2 模型训练
使用以下命令训练模型:
python main.py --dataset=Video --train_dir=default
5.3 模型评估
训练完成后,可以使用以下命令评估模型性能:
python evaluate.py --dataset=Video --train_dir=default
通过以上步骤,你就可以成功下载、安装并运行 SASRec 项目。希望这篇教程对你有所帮助!