开源调制识别数据集整理

开源调制识别数据集整理

开源调制识别数据集整理 开源调制识别数据集整理 项目地址: https://gitcode.com/Resource-Bundle-Collection/d883d

简介

本仓库提供了一系列开源调制识别数据集的整理和下载资源。这些数据集广泛应用于信号处理和通信领域的研究,特别是用于自动调制识别算法的训练和测试。

数据集列表

以下是本仓库中包含的主要数据集及其详细信息:

RML2016-10A

  • 调制方式: 8个数字调制方式(8PSK, BPSK, CPFSK, GFSK, PAM4, 16QAM, 64QAM, QPSK)和3个模拟调制方式(AM-DSB, AM-SSB, WBFM)
  • 样本总量: 22万

RML2016-10B

  • 调制方式: 8个数字调制方式(8PSK, BPSK, CPFSK, GFSK, PAM4, 16QAM, 64QAM, QPSK)和2个模拟调制方式(AM-DSB, WBFM)
  • 样本总量: 120万

RML2016-04C

  • 调制方式: 8个数字调制方式(8PSK, BPSK, CPFSK, GFSK, PAM4, 16QAM, 64QAM, QPSK)和3个模拟调制方式(AM-DSB, AM-SSB, WBFM)
  • 样本总量: 16.206万

RML2018-01A

  • 调制方式: 24种调制方式(32PSK, 16APSK, 32QAM, FM, GMSK, 32APSK, OQPSK, 8ASK, BPSK, 8PSK, AM-SSB-SC, 4ASK, 16PSK, 64APSK, 128QAM, 128APSK, AM-DSB-SC, AM-SSB-WC, 64QAM, QPSK, 256QAM, AM-DSB-WC, OOK, 16QAM)
  • 样本总量: 255.5904万

使用说明

  1. 下载: 请访问本仓库的下载链接以获取所需的数据集。
  2. 环境要求: 部分数据集对内存占用较大,建议在具备一定条件的设备上使用。
  3. 应用场景: 这些数据集适用于发表普通EI或低区SCI论文的研究,能够节省大量研究时间。

参考文献

本仓库中的数据集参考了以下文献和研究成果,建议在使用时适当引用:

  • O'Shea, T. J. 等人的研究成果
  • 其他相关调制识别领域的研究文献

贡献与反馈

欢迎对本仓库进行贡献和反馈。如果您有新的数据集或改进建议,请提交Issue或Pull Request。

许可证

本仓库中的数据集遵循CC 4.0 BY-SA版权协议,转载请附上原文出处声明。

开源调制识别数据集整理 开源调制识别数据集整理 项目地址: https://gitcode.com/Resource-Bundle-Collection/d883d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宫蔚英Joanna

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值