AI玩Flappy Bird:基于DQN的机器学习实例【完结】
AI玩FlappyBird基于DQN的机器学习实例完结 项目地址: https://gitcode.com/Resource-Bundle-Collection/e6a82
项目简介
本项目是一个基于深度Q网络(DQN)的机器学习实例,旨在通过AI自动玩Flappy Bird游戏。通过上百万次的训练,AI能够达到较高的分数甚至不死。项目使用了Tensorflow框架,并结合了Flappy Bird的游戏源码进行改写和训练。
项目背景
Flappy Bird是一款简单但极具挑战性的游戏,玩家需要控制一只小鸟,跨越由各种不同长度水管所组成的障碍。由于游戏的操作方式简单,但想要获得非常高的分数却非常困难,因此使用AI来玩Flappy Bird并通过大量训练来提高分数成为了一个有趣且具有挑战性的任务。
项目实现
DQN简介
DQN(Deep Q-Learning)是一种结合了深度学习和强化学习的方法。通过在探索的过程中训练网络,最终达到的目标是将当前状态输入,得到的输出就是对应它的动作值函数。DQN有两个特性:Frozen Target Network和Experience Replay。
项目结构
- 游戏本体:Flappy Bird的游戏本体代码已经编写好,是现成的。
- AI训练:使用Tensorflow基于DQN实现AI玩Flappy Bird。
- 训练结果:经过多次训练,AI能够达到较高的分数,甚至不死。
使用方法
- 下载资源文件:下载本仓库中的资源文件,包括游戏本体和训练好的AI模型。
- 运行代码:按照提供的代码和说明,运行AI玩Flappy Bird的程序。
- 体验AI效果:观察AI在游戏中的表现,体验AI通过训练达到的高分效果。
训练结果
经过多次训练,AI的表现如下:
- 5万次:AI只会一直往上飞。
- 10万次:略有进步,不会一直总是往上飞。
- 20万次:有了大致的方向,尝试越过第一个柱子。
- 30万次:基本可以正确地找到第一个柱子间隙的方位并尝试越过。
- 40万次:已经有很高的几率过第一个柱子,并且有一定几率过第二个柱子。
- 50万次:过多个柱子的几率更高了。
- 100万次:已经达到了普通玩家的正常水平,能顺利通过5~8个柱子。
- 200万次:几乎无敌了,失败是极低概率才会发生。
- 280万次:观察了十几分钟都没有失败,应该已经无敌了。
总结
本项目展示了如何使用DQN算法训练AI玩Flappy Bird游戏,并通过大量训练使AI达到几乎无敌的水平。通过本项目,可以深入理解DQN算法的原理和应用,同时也能体验到AI在游戏中的强大表现。
AI玩FlappyBird基于DQN的机器学习实例完结 项目地址: https://gitcode.com/Resource-Bundle-Collection/e6a82