基于机器视觉的水面垃圾检测系统的设计与实现
简介
本项目为一个基于机器视觉的水面垃圾检测系统,主要利用深度学习技术进行垃圾检测。本系统致力于为环境保护和水域清洁提供有效的技术支持。
主要内容
- 样本数数据采集及训练:通过实地采集水面垃圾样本数据,以及利用ImageNet数据集中对应类别的垃圾数据进行模型训练。
- 网络微调:针对水面垃圾的特点,对Yolo v5网络进行微调,提高垃圾检测的正确率与速度。
- 界面设计:采用QT5设计简约、易用的操作界面。
- 模型更换功能:系统支持便捷更换新模型,以适应不断变化的垃圾检测需求。
系统架构
本系统在Windows系统下开发与运行,使用Pycharm集成开发环境,主要依赖Tensorflow、OpenCV、Torch等库。
使用说明
请确保已安装Python环境以及所需的库,然后运行主程序即可启动水面垃圾检测系统。
技术支持
如有任何问题或建议,请参考系统文档或向开发者团队咨询。
免责声明
本系统仅供学习和研究使用,开发者不对使用过程中可能产生的问题承担责任。用户在使用过程中应遵守相关法律法规,不得将本系统用于非法用途。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考