基于机器视觉的水面垃圾检测系统的设计与实现

基于机器视觉的水面垃圾检测系统的设计与实现

【下载地址】基于机器视觉的水面垃圾检测系统的设计与实现 本项目是一个基于机器视觉的水面垃圾检测系统,利用深度学习技术为环境保护提供高效解决方案。通过实地采集垃圾样本数据并结合ImageNet数据集,系统对Yolo v5网络进行微调,显著提升检测精度与速度。系统采用QT5设计简洁易用的操作界面,并支持模型灵活更换,以适应不同检测需求。开发环境为Windows,依赖Tensorflow、OpenCV、Torch等库。本系统旨在为水域清洁提供技术助力,适合学习与研究使用。 【下载地址】基于机器视觉的水面垃圾检测系统的设计与实现 项目地址: https://gitcode.com/Premium-Resources/764ff

简介

本项目为一个基于机器视觉的水面垃圾检测系统,主要利用深度学习技术进行垃圾检测。本系统致力于为环境保护和水域清洁提供有效的技术支持。

主要内容

  • 样本数数据采集及训练:通过实地采集水面垃圾样本数据,以及利用ImageNet数据集中对应类别的垃圾数据进行模型训练。
  • 网络微调:针对水面垃圾的特点,对Yolo v5网络进行微调,提高垃圾检测的正确率与速度。
  • 界面设计:采用QT5设计简约、易用的操作界面。
  • 模型更换功能:系统支持便捷更换新模型,以适应不断变化的垃圾检测需求。

系统架构

本系统在Windows系统下开发与运行,使用Pycharm集成开发环境,主要依赖Tensorflow、OpenCV、Torch等库。

使用说明

请确保已安装Python环境以及所需的库,然后运行主程序即可启动水面垃圾检测系统。

技术支持

如有任何问题或建议,请参考系统文档或向开发者团队咨询。

免责声明

本系统仅供学习和研究使用,开发者不对使用过程中可能产生的问题承担责任。用户在使用过程中应遵守相关法律法规,不得将本系统用于非法用途。

【下载地址】基于机器视觉的水面垃圾检测系统的设计与实现 本项目是一个基于机器视觉的水面垃圾检测系统,利用深度学习技术为环境保护提供高效解决方案。通过实地采集垃圾样本数据并结合ImageNet数据集,系统对Yolo v5网络进行微调,显著提升检测精度与速度。系统采用QT5设计简洁易用的操作界面,并支持模型灵活更换,以适应不同检测需求。开发环境为Windows,依赖Tensorflow、OpenCV、Torch等库。本系统旨在为水域清洁提供技术助力,适合学习与研究使用。 【下载地址】基于机器视觉的水面垃圾检测系统的设计与实现 项目地址: https://gitcode.com/Premium-Resources/764ff

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邬然野Ursa

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值