GOT10k数据集说明文档
本文档详细介绍了目标跟踪领域常用的GOT10k数据集,包括数据集的结构、内容和标记文件的说明。GOT10k数据集是一个大规模、多样化的视频数据集,适用于目标跟踪算法的研究与评估。
数据集简介
GOT10k数据集包含了一系列视频序列,用于评估目标跟踪算法的性能。该数据集具有以下特点:
- 视频序列来源广泛,涵盖了多种场景和运动类型。
- 数据集规模较大,总计近70G。
- 提供了详尽的标注信息,包括边界框和遮挡标记。
数据集结构
GOT10k数据集分为训练集和测试集两部分。每个视频序列包含多个视频帧,以及对应的标注文件。
- 训练集:用于模型训练和参数调优。
- 测试集:用于评估跟踪算法的性能。
数据集内容
数据集包含了多种类型的视频序列,如:
- 室内场景
- 室外场景
- 动态背景
- 遮挡目标
- 快速移动目标
- 尺度变化
标记文件说明
标记文件采用JSON格式,包含了以下信息:
- 视频帧序号:每个视频帧的序号。
- 边界框坐标:目标的边界框坐标,以{x_min, y_min, x_max, y_max}的形式表示。
- 遮挡标记:目标是否被遮挡的标记,1表示被遮挡,0表示未被遮挡。
使用说明
请根据实际需求下载并使用GOT10k数据集。数据集下载完成后,可以参考文档中的说明进行数据集的加载和处理。
感谢您的使用!