内燃机可变气门驱动研究进展 近年来,人们对空气污染和能源使用的日益关注导致了车辆动力总成系统的电气化。另一方面,一个多世纪以来,内燃机一直是主要的车辆动力源,并且在未来几十年内将继续在大多数车辆中使用;因此,有必要采用先进技术以机电一体化系统替代传统的机械系统,以满足不断提高发动机效率和减少排放的日益增长的需求,其中发动机进气和排气门系统是影响发动机燃烧效率的关键子系统 和排放。
KITTI Tracking dataset whose format is letf_top_right_bottom to JDE normalied xc_yc_w_h tracking to train
KITTI Detection dataset whose format is letf_top_right_bottom to JDE normalied xc_yc_w_h KITTI Detection to JDE format
Paper writing templete - the usage of colon In this section we develop two simple but powerful prediction methods: the linear model fit by least squres and the KNN prediction rule. The linear model makes huge assumptions about structure and yields stable but possibly inaccurate predictions. The meth
Faster RCNN图 https://zhuanlan.zhihu.com/p/35922980二、 Get all Anchor这一块呢是对feature map上的每个点,我们都产生9个anchor值。则一共有 [公式] 个anchor。这里什么是anchor,其实就是以每个点为中心产生的box。作者写的generate_anchor函数运行之后得到的9个anchor输出如下:-83 -39 100 56-175 -87 192 104-359 -183 376 200-55 -55 72 72-119 -1
LaTex and VSCode with Chinese RequirementVSCodeTexLive + TextStudioSome useful Extension for VScode:Code Spell CheckerLaTex UtilitiesLaTex Workshop1. Edit setting.json , append the content below.// Latex workshop "latex-workshop.latex.tools": [ { "name"
什么是 Object Tracking - SOT & MOT 什么是 Object Tracking本文指的目标跟踪包含 SOT 和 MOT。Object Tracking 是一个深度学习过程,算法跟踪目标的 motion。换句话说,它是 estimate 或 predict 视频中运动物体的 positions 和其他相关信息的 task。Object Tracking 通常涉及到 Object Detection 的过程。以下是这些步骤的 quick overview:Object Detection,算法通过在对象周围创建一个 bounding box
目标检测到目标跟踪 -- Faster R-CNN 观测器 https://blog.paperspace.com/目标跟踪在在某些程度上可以说是目标检测的一个维度拓展。目标检测类似于贝叶斯 Filtering 和 Smoothing 中的观测器,整个目标跟踪 task 就像是(offline tracking 对应于smoothing 问题,online tracking对应于filtering 问题)一个 time-vary system,我们要做的就是使用 observation 来估计系统的 Hiden State (current object loca
SAVING AND LOADING A GENERAL CHECKPOINT IN PYTORCH 保存和加载通用的断点模型以进行inference或恢复训练,这有助于您从上一个地方继续进行。当保存一个常规断点时,您必须保存模型的state_dict之外的更多信息。保存优化器的state_dict也很重要,因为它包含缓冲区和参数,随着模型的运行而更新。您可能希望保存的其他项目是您离开的时期,最新记录的训练损失,外部torch.nn.嵌入层,以及更多,基于您自己的算法。要保存多个checkpoint,必须将它们组织在字典中,并使用torch.save()序列化字典。一个常见的PyTorch约定是使用.ta
Visual (Single) Object Tracking -- SiamRPN SiamRPN source codeimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.nn.modules.conv import Conv2dclass SiamRPN(nn.Module): def __init__(self, anchor_num=5): super(SiamRPN, self).__init__() self.anchor_num = anchor_
conda 换源 移除所有源conda config --remove-key channelsconda config --showconda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/conda config --setshow_c
Holiday Homework Reading slidesC:\Users\lpf\Desktop\Applied Intelligence\ML_for_Autonomous_DrivingC:\Users\lpf\Desktop\Applied Intelligence\MIT D4MReading e-booksDeep Learning for Computer Vision with Python Volume 1 & 2 & 3Digital Image ProcessingImage P
2022年01月世界编程语言排行 2022年01月世界编程语言排行2022年1月TIOBE指数一月标题:2021年度Python编程语言Python赢得了久负盛名的TIOBE编程语言奖。祝贺!这是连续第二次。该奖项授予一年内获得最高收视率增长的编程语言。C#在历史上第一次获得了这个头衔,但Python在上个月超过了C#。Python在2021年初开始在TIOBE指数中排名第3位,并将Java和C都抛在后面,成为TIOBE指数的第一名。但Python的受欢迎程度并不止于此。它目前领先于其他公司1%以上。Java在2001年创下26.4
RGB image Histogram 均衡和可视化matlab代码 读取学校的手机拍摄图像“lpf.jpg”可视化三个通道的Histogram% Program to read in all the RGB color images in a folder and display the histograms of each color channel.function RGB_Histogram_Demo()% Change the current folder to the folder of this m-file.if(~isdeployed) cd(
DL深度学习实验管理脚本 实验管理实验的完整记录需要以下几个方面内容:日志文件:记录运行全过程的日志。权重文件:运行过程中保存的权重文件,用于断点续训和测试选择最优的实验结果(提前终止训练)。TensorBoard文件:保存训练过程的TensorBoard可视化图,直观观察实验结果。配置文件:调参过程详细记录当前运行的配置文件备份代码:用于保存当前版本的代码,方便回滚。代码组织exp - 实验名+日期 - runs: tensorboard保存的文件 - weights: 权重文件 - config