LLM_Web_search:赋予本地大模型网络搜索能力的革新工具
项目基础介绍与编程语言
LLM_Web_search 是一个为 oobabooga/text-generation-webui 设计的扩展插件,它开创性地让本地语言模型(LLM)能够通过特定命令执行网页搜索。此项目以 Python 为主要开发语言,利用其强大的库支持来实现复杂的功能集成。
核心功能
- 网页搜索集成:通过识别模型输出中的指定命令(如
Search_web
),自动触发基于DuckDuckGo的网络搜索。 - 上下文提取:采用LangChain的压缩技术和Okapi BM25或SPLADE检索算法,从搜索结果中提取相关部分,并将其融入模型的响应之中。
- 自定义配置:允许用户定制搜索命令正则表达式、选择搜索引擎后端(包括SearXNG作为备选)、以及调整关键词检索器等。
- 环境兼容性:提供两种安装依赖的方式,确保不同用户的系统配置都能顺利运行。
最近更新的功能
虽然具体的最近更新详情未在提问中提供,通常开源项目会包含以下更新趋势:
- 性能优化:持续的性能改进,可能包括加快处理速度,减少资源消耗。
- 兼容性增强:与最新版本的text-generation-webui和其他依赖的兼容性更新。
- 用户体验提升:用户界面和交互设计的改进,比如简化设置流程,增强指示模板的多样性。
- 新搜索引擎支持 或 预设参数优化:可能会增加新的搜索后端选项或对现有搜索参数进行更细致的控制。
为了获取实际的最近更新内容,建议直接访问项目页面的“Commits”或“Release”标签查看官方更新日志。此项目通过不断地迭代升级,致力于为开发者和研究者提供更为强大和灵活的本地语言模型辅助工具。