DeepEval:开源的LLM评估框架

DeepEval:开源的LLM评估框架

deepeval The Evaluation Framework for LLMs deepeval 项目地址: https://gitcode.com/gh_mirrors/de/deepeval

项目基础介绍和主要编程语言

DeepEval 是一个简单易用的开源大型语言模型(LLM)评估框架。它类似于 Pytest,但专门用于单元测试 LLM 输出。该项目主要使用 Python 编程语言开发,适合 Python 开发者使用。

项目核心功能

DeepEval 的核心功能包括:

  1. 多种评估指标:支持多种 LLM 评估指标,如 G-Eval、幻觉检测、答案相关性、RAGAS 等。这些指标可以通过本地运行的 LLM 和其他 NLP 模型进行评估。
  2. 批量评估:可以轻松地在不到 20 行 Python 代码中对整个数据集进行批量评估,支持并行处理。
  3. 自定义指标:用户可以创建自己的自定义指标,并自动集成到 DeepEval 的生态系统中。
  4. CI/CD 集成:无缝集成到任何 CI/CD 环境中,方便在开发流程中进行持续评估。
  5. 基准测试:支持在不到 10 行代码中对任何 LLM 进行基准测试,包括 MMLU、HellaSwag、DROP、BIG-Bench Hard、TruthfulQA、HumanEval、GSM8K 等。

项目最近更新的功能

最近更新的功能包括:

  1. 云端评估:现在可以在 Confident AI 的基础设施上免费运行 DeepEval 的评估指标。
  2. 生产实时评估:支持在生产环境中实时评估 LLM 响应,并将生产事件添加到现有评估数据集中,以增强评估效果。
  3. 调试和优化:通过 LLM 跟踪记录调试评估结果,并根据评估结果比较和选择最佳超参数(如提示模板、分块大小、使用的模型等)。

DeepEval 是一个功能强大且灵活的 LLM 评估工具,适合各种 LLM 应用场景,无论是基于 RAG 还是微调的应用。

deepeval The Evaluation Framework for LLMs deepeval 项目地址: https://gitcode.com/gh_mirrors/de/deepeval

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

石爽佳Phoebe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值