EasyRec 安装和配置指南

EasyRec 安装和配置指南

EasyRec A framework for large scale recommendation algorithms. EasyRec 项目地址: https://gitcode.com/gh_mirrors/ea/EasyRec

1. 项目基础介绍和主要编程语言

项目基础介绍

EasyRec 是一个易于使用的推荐系统框架,由阿里巴巴开源。它实现了当前最先进的深度学习模型,广泛应用于推荐系统的常见任务中,如候选生成(匹配)、评分(排序)和多任务学习。EasyRec 通过简单的配置和超参数调优(HPO),提高了生成高性能模型的效率。

主要编程语言

EasyRec 主要使用 Python 编程语言进行开发。

2. 项目使用的关键技术和框架

关键技术和框架

  • TensorFlow: EasyRec 基于 TensorFlow 框架,支持 TensorFlow 1.x 和 2.x 版本。
  • 深度学习模型: 包括 DSSM、MIND、DropoutNet、CoMetricLearningI2I、PDN、W&D、DeepFM、MultiTower、DCN、FiBiNet、MaskNet、PPNet、CDN、DIN、BST、CL4SRec、MMoE、ESMM、DBMTL、AITM、PLE、HighwayNetwork、CMBF、UNITER 等。
  • 自动化机器学习 (AutoML): 支持超参数搜索、自动特征交叉等功能。
  • 大规模部署: 支持大规模嵌入和在线学习,多种并行策略(如 ParameterServer、Mirrored、MultiWorker)。

3. 项目安装和配置的准备工作和详细安装步骤

准备工作

  1. 安装 Python: 确保你的系统上安装了 Python 3.6 或更高版本。
  2. 安装 TensorFlow: 根据你的需求安装 TensorFlow 1.x 或 2.x 版本。
  3. 安装 Git: 用于克隆项目代码。

详细安装步骤

步骤 1: 克隆项目代码

首先,使用 Git 克隆 EasyRec 项目代码到本地:

git clone https://github.com/alibaba/EasyRec.git
cd EasyRec
步骤 2: 创建虚拟环境(可选)

为了隔离项目依赖,建议创建一个 Python 虚拟环境:

python3 -m venv easyrec-env
source easyrec-env/bin/activate  # 在 Windows 上使用 `easyrec-env\Scripts\activate`
步骤 3: 安装依赖

使用 pip 安装项目所需的依赖:

pip install -r requirements.txt
步骤 4: 配置项目

根据你的需求,编辑配置文件 config.yamlconfig.json,配置模型、数据路径、训练参数等。

步骤 5: 运行示例

项目中提供了多个示例,你可以选择一个示例进行测试:

python examples/run_example.py
步骤 6: 训练模型

根据配置文件,启动模型训练:

python easy_rec/python/train.py --config_path=path/to/your/config.yaml
步骤 7: 评估和导出模型

训练完成后,可以使用以下命令进行模型评估和导出:

python easy_rec/python/eval.py --config_path=path/to/your/config.yaml
python easy_rec/python/export.py --config_path=path/to/your/config.yaml

结束语

通过以上步骤,你应该已经成功安装并配置了 EasyRec 项目。你可以根据项目文档进一步探索更多功能和高级配置选项。

EasyRec A framework for large scale recommendation algorithms. EasyRec 项目地址: https://gitcode.com/gh_mirrors/ea/EasyRec

### 使用MATLAB实现LIDC-IDRI数据集肺结节的分类 为了在MATLAB中实现LIDC-IDRI数据集肺结节的有效分类,可以采用多种策略和技术。这里介绍一种基于特征提取和机器学习模型的方法。 #### 数据预处理 首先加载并准备用于训练的数据集。由于提到的数据已经预先裁剪为64×64像素大小[^2],这一步骤相对简单: ```matlab % 加载图像文件夹路径下的所有png格式图片作为输入样本 imageFolder = 'path_to_your_prepared_dataset'; imds = imageDatastore(imageFolder, ... 'IncludeSubfolders', true, ... 'LabelSource', 'foldernames'); ``` 接着划分训练集与测试集以便后续评估性能: ```matlab [trainImages,testImages] = splitEachLabel(imds,0.8,'randomized'); % 80%-20%比例随机分配给训练组和验证组 ``` #### 特征工程 对于每张CT扫描切片图,计算一组描述其纹理特性的统计量或其他形态学指标来表征潜在病灶区域。常用的技术包括但不限于灰度共生矩阵(GLCM),局部二值模式(LBP)以及Hu矩等。 ```matlab function features = extractFeatures(img) glcm = graycomatrix(rgb2gray(img),... 'Offset',[0 1; -1 1; -1 0; -1 -1]); stats = graycoprops(glcm); % 提取更多类型的特征向量可提高识别精度 features = [ mean([stats.Contrast]), mean([stats.Correlation]), mean([stats.Energy ]), mean([stats.Homogeneity]) ]; end ``` 上述函数`extractFeatures()`定义了一个简单的GLCM特性抽取过程[^1]。 #### 构建分类器 利用支持向量机(SVM)或者其他合适的监督式算法构建预测模型。在此之前需先获取标签信息并与对应的影像特征关联起来形成完整的训练样本集合。 ```matlab % 假设已知正负类别标记存储于cell数组labels中 positiveIdx = cellfun(@(x) strcmp(x,'Positive'), labels); negativeIdx = ~positiveIdx; posFeats = arrayfun(@extractFeatures, trainImages.Files(positiveIdx)', 'UniformOutput', false); negFeats = arrayfun(@extractFeatures, trainImages.Files(negativeIdx)', 'UniformOutput', false); trainData = cat(1,posFeats{:}, negFeats{:}); classLabels = [ones(length(posFeats),1); zeros(length(negFeats),1)]; SVMModel = fitcsvm(trainData,classLabels,... 'KernelFunction','linear',... 'Standardize',true); ``` 这段代码片段展示了如何创建线性核的支持向量机,并通过标准化后的特征来进行拟合操作[^3]。 最后,在独立的测试子集上应用所得到的最佳参数配置完成最终评价工作。 ```matlab testFeats = cellfun(@extractFeatures, testImages.ReadFcn(testImages.Files)', 'UniformOutput',false); predictedScores = predict(SVMModel,[testFeats{:}]); confusionchart(double(strcmp(labels{testImages.Labels},'Positive')), predictedScores>0.5); ``` 此部分实现了对新实例进行打分并将结果可视化展示出来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

井越鑫Butterfly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值