CVAT 安装和配置指南
cvat 项目地址: https://gitcode.com/gh_mirrors/cva/cvat
1. 项目基础介绍和主要编程语言
项目介绍
CVAT(Computer Vision Annotation Tool)是一个用于计算机视觉的交互式视频和图像标注工具。它被全球数以万计的用户和公司使用,旨在帮助开发人员、公司和组织通过数据中心化的AI方法解决实际问题。
主要编程语言
CVAT 主要使用以下编程语言:
- Python:用于后端开发
- JavaScript:用于前端开发
2. 项目使用的关键技术和框架
关键技术和框架
- Docker:用于容器化部署,简化安装和配置过程。
- OpenVINO:用于深度学习模型的推理加速。
- React:用于前端界面的开发。
- Django:用于后端服务器的开发。
3. 项目安装和配置的准备工作和详细安装步骤
准备工作
-
安装 Docker:
- 访问 Docker 官网 下载并安装 Docker。
- 确保 Docker 服务已启动。
-
安装 Docker Compose:
- 访问 Docker Compose 官网 下载并安装 Docker Compose。
-
克隆 CVAT 仓库:
git clone https://github.com/openvinotoolkit/cvat.git cd cvat
详细安装步骤
-
配置 Docker Compose 文件:
- 进入 CVAT 项目目录,编辑
docker-compose.yml
文件(可选,根据需要配置数据库等参数)。
- 进入 CVAT 项目目录,编辑
-
启动 CVAT 服务:
docker-compose up -d
-
访问 CVAT 界面:
- 打开浏览器,访问
http://localhost:8080
。
- 打开浏览器,访问
-
初始化管理员账户:
- 在终端中运行以下命令创建管理员账户:
docker exec -it cvat bash -ic 'python3 ~/manage.py createsuperuser'
- 按照提示输入用户名、邮箱和密码。
- 在终端中运行以下命令创建管理员账户:
-
登录 CVAT:
- 使用刚刚创建的管理员账户登录 CVAT 界面。
配置和使用
- 创建任务:在 CVAT 界面中,点击“任务”菜单,创建新的标注任务。
- 上传数据:上传需要标注的图像或视频文件。
- 开始标注:使用 CVAT 提供的标注工具进行标注。
通过以上步骤,您可以成功安装和配置 CVAT,并开始使用它进行计算机视觉数据的标注工作。