CVAT标注工具概述


CVAT(Computer Vision Annotation Tool,计算机视觉注释工具的主要功能)

1. 概述

1.1 图像注释工具

  • 适用范围:用于注释数字图像和视频。CVAT 支持与对象检测、图像分类和图像分割相关的监督式机器学习任务。
  • 标注类型:它使用户能够使用四种类型的形状对图像进行注释:框、多边形(通常和用于分割任务)、折线(可用于注释道路上的标记)和点(例如,用于注释面部特征或姿态估计)。
  • 便捷工具:CVAT 还提供有助于执行典型注释任务的功能,例如许多自动化工具(包括使用 TensorFlow对象检测 API 复制和传播对象、插值和自动注释的功能)、视觉设置、快捷方式、过滤器等。

1.2 CVAT的优势:

  1. CVAT是基于Web的。图像和视频注释软件可以完全基于网络使用,而无需安装本地客户端。此类注释工具可以在本地计算机上运行,也可以作为基于 Web 的注释工具运行,允许团队成员之间进行协作。
  2. 团队开发:用户可以协作并创建公共任务,以在其他用户之间分配工作。可以团队一起完成一个项目project,一个项目可以分成多个任务task,一个任务有可以氛围多个job,可以同时分配给多人进行数据标注。
  3. CVAT中的自动注释允许用户在关键帧之间使用插值。可用于在多个关键帧之间插值边界框和属性。这用于自动注释一组图像,例如,不多次绘制相同的边界框。
  4. 可以调用模型自动标注。可以与 Roboflow 和 HuggingFace 集成,如可以在CVAT使用Roboflow Universe上的 50,000+ 模型之一在CVAT中自动标记数据。
  5. CVAT适合集成到计算机视觉平台中,例如Viso Suite。

1.3 CVAT的局限性:

  1. 测试检查必须手动完成,从而减慢了开发过程。 尽管 CVAT 支持一些自动标注,但所有检查都必须手动完成,这可能会减慢开发过程。CVAT的文档目前有些有限,这可能会阻碍参与该工具的开发。
  2. CVAT的浏览器支持需要使用 Google Chrome。
    1.4 CVAT软件评价
  • CVAT等内部数据注释工具可有效地注释图像并加快流程。该软件工具旨在快速分配新任务并管理工作流程。很容易平衡工作的价格和质量。

2. 标注类型

只适用于注释数字图像和视频,视觉任务的标注都能标。
适用范围:

  1. Image Classification 图像分类
  2. Object Detection 物体检测
  3. Semantic and Instance Segmentation 语义和实例分割
  4. Point Clouds / LIDAR 点云/激光雷达
  5. 3D Cuboids 3D长方体
  6. Video Annotation 视频注释
  7. Skeleton 姿态

选择需要标注的作业(作业状态是‘annotation’标注状态),进入标注。

[图片]

Stage描述
Annotation提供对批注工具的访问。被分派者将能够查看他们分配的工作并对其进行注释。默认情况下,具有“注释”阶段的工作负责人无法报告注释错误或问题。
Validation授予对 QA 工具的访问权限。被分派者将看到他们分配的工作,并可以验证这些工作,同时报告问题。默认情况下,具有“验证”阶段的工作负责人无法更正错误或批注数据集。
Acceptance不授予任何其他访问权限或更改注释器的界面。它只是将工作标记为已完成。

2.1 图像标注

CVAT提供以下形状来注释图像:

  • 矩形或边界框
  • 多边形
  • 折线
  • 长方体
  • 3d任务中的长方体
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

2.2 视频标注

追踪模式Track mode (视频标注使用)

Shape:是用来标注图像的。
Track:是专门用来标注视频的。
在这里插入图片描述
2. 为对象创建赛道(以所选汽车为例):

  • 通过单击创建一个 Rectangle Track in Track mode 。
    在这里插入图片描述
  • 在矩形中 Track mode 将自动插入下一帧。
  • 骑自行车的人开始在框架 #2270 上移动。让我们将帧标记为关键帧。您可以按 K 此按钮或单击 star 按钮(请参阅下面的屏幕截图)。
    在这里插入图片描述
  • 如果对象开始改变其位置,则需要修改它发生的位置的矩形。无需更改每个帧上的矩形,只需更新多个关键帧,它们之间的帧将自动插值。
  • 让我们向前跳 30 帧并调整对象的边界。请参阅以下示例:
    在这里插入图片描述
  • 之后,对象的矩形将在帧 2270 到 2300 上自动更改:
    在这里插入图片描述

3. 便捷工具

CVAT 还提供有助于执行典型注释任务的功能,例如许多自动化工具(包括使用 TensorFlow对象检测 API 复制和传播对象、插值和自动注释的功能)、视觉设置、快捷方式、过滤器等。

3.1 快捷键

功能快捷键
标注(自动画框)再按1次结束标注N
前、后移动1张D、F
前、后移动10张C、V
查看前,后一个标注的图片←,→
调整标注的形状Q
设置/取消视频标注的关键点K
复制框/粘贴框Ctrl + C/Ctrl + V
转换标签Ctrl+(0…9)

4. 团队开发

4.1 CVAT分析监控

通过分析,可以查看每个用户在每项任务上花费了多少时间,以及他们在任何时间范围内做了多少工作。

4.2 线上检验标注作业是否合格

[图片]
将标注作业设置为检验状态时,打开该作业的时候,操作页面就换了左侧操作部分就没有标注的工具了,这时没法更正错误。

4.3 检验时自动注释的功能

进行浏览标注是否合格,若不合格右击进行不合格注释。

  1. 检验标注是否合格时自动注释:
    [图片]

在这里插入图片描述
如上图“1”是新创建一个注释,可以创建新的不符合你要求的内容。“2”是位置不合格“3”标注内容不对。
2. 如下图选择“2”位置不对,就会有如下注释。
在这里插入图片描述
3. 如下图选择“1”创建新的注释。且该这个创建的新注释也会加入到快捷注释中。

4.创建一个验证时的问题。

4.4 检验后重新标注,验收是否合格

  1. 如果反馈的问题如果得到解决,可以选择注释“已经解决”或者移除这个不合格的注释。
    在这里插入图片描述

  2. 重新标注后进行验收时,检查这个标注作业的标注是否合格,若符合要求则更换这个标注作业的状态为完成。

5. 修改标注的格式

5.1 创建任务将图片导入cvat

在这里插入图片描述

5.2 上传标注文件

  1. Menus > Upload annotations
    [图片]

  2. 从可用选项列表中选择对应的标签格式。
    [图片]

  3. 标注文件的格式是打包压缩好的.zip 文件
    在这里插入图片描述

  4. 然后回到任务面板,打开就可以看到已经标注好的结果了

5.3 导出需要的标签格式

  1. Menus > Export task dataset
    在这里插入图片描述

  2. 从选择需要输出的标签格式。
    [图片]

  3. 导出标签文件

  4. (可选)切换保存图像开关,如果您希望在导出中包含图像。
    注意:“保存图像”选项是一项付费功能。

  5. 输入生成的 .zip 存档的名称。

  6. 单击“确定”启动导出。
    在这里插入图片描述

(最全)CVAT标注工具详细操作步骤及CVAT介绍

CVAT标注工具概述
1.CVAT建项目步骤
1.1.CVAT初使用—Task界面介绍
1.2.CVAT标注界面介绍
2.CVAT—导入导出数据集并上传注释
3.CVAT—快捷键详述
4.1.CVAT——目标检测的标注详细步骤
4.2.CVAT——分类任务标注的详细步骤
4.3.CVAT——分割标注的详细步骤
4.4.CVAT——使用折线进行注释
4.5.CVAT——视频标注的详细步骤
4.6.CVAT——带点的注释详细操作
4.7.CVAT——椭圆标注(道路标志)
4.8.CVAT——用骨架skeletons注释
4.9.CVAT——用长方体进行注释
4.10.CVAT——3D对象标注
5.CVAT用户角色
6.CVAT——属性注释模式

### YOLOv11在姿态估计任务中的标注方法 对于YOLOv11应用于姿态估计的任务,数据集的构建和标注至关重要。为了确保模型的有效性和准确性,在创建用于训练的数据集中,需遵循一系列严格的指导原则。 #### 数据集准备 手语数据集作为特殊应用场景下的重要资源,其质量直接影响到最终模型的表现效果[^1]。因此,当针对手势或更广泛的人体动作进行分析时,所使用的图片应当尽可能覆盖各种可能的情况,包括不同的光照条件、背景环境变化以及个体之间的差异等因素的影响。 #### 标注工具与流程 在实际操作过程中,可以采用专业的图像标注软件来进行关键点标记工作。这些工具允许用户精确地标记人体关节位置,并支持导出符合COCO格式或其他指定标准的数据文件以便后续处理。具体来说: - **选择合适的标注平台**:考虑到效率及易用性,可以选择Labelme、CVAT等开源项目提供的在线/离线版本。 - **定义标签规则**:依据研究目的设定所需捕捉的身体部位列表(如手腕、肘部),并为每种状态分配唯一ID号。 - **执行逐帧打标作业**:由经验丰富的工作人员负责审核每一幅画面内的所有细节部分直至完成整个视频序列的处理过程;期间还需注意保持一致性以减少误差累积的可能性。 ```bash # 安装必要的库 pip install labelme cvat-core opencv-python-headless ``` #### 转换至YOLO格式 一旦完成了初步的标注之后,则需要进一步调整结构使之适应YOLO系列算法的要求。这通常涉及到将原始JSON文档转换为目标检测框架所能理解的形式——即txt文本记录着各类物体中心坐标及其宽度高度信息的同时附加角度参数描述肢体朝向特征。 ```python import json from pathlib import Path def convert_to_yolo_format(json_file, output_dir): with open(json_file) as f: data = json.load(f) image_info = data['imageData'] shapes = data['shapes'] h, w = image_info.shape[:2] lines = [] for shape in shapes: points = shape["points"] class_id = shape["label"] # 计算边界框中心点(x_center,y_center),宽高(w,h) x_coords = [p[0] for p in points] y_coords = [p[1] for p in points] xmin, xmax = min(x_coords), max(x_coords) ymin, ymax = min(y_coords), max(y_coords) x_center = (xmin + xmax) / 2 / w y_center = (ymin + ymax) / 2 / h width = abs((xmax - xmin)) / w height = abs((ymax - ymin)) / h line = f"{class_id} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}" lines.append(line) txt_path = Path(output_dir) / f"{Path(json_file).stem}.txt" with open(txt_path, 'w') as file: for l in lines: file.write(l + '\n') convert_to_yolo_format('example.json', './output') ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值