NEU-DET钢材表面缺陷数据集
数据集简介
本数据集由东北大学宋克臣团队制作,专注于钢材表面缺陷的检测与识别。数据集包含了1800张图片,涵盖了六种常见的钢材表面缺陷类型,分别是:
- Crazing(裂纹)
- Inclusion(夹杂物)
- Patches(斑点)
- Pitted Surface(麻面)
- Rolled-in Scale(轧入氧化皮)
- Scratches(划痕)
数据集结构
数据集主要分为两个部分:
- ANNOTATIONS:包含每张图片对应的标签信息,用于标注缺陷的类型和位置。
- IMAGES:包含1800张钢材表面缺陷的图片,每张图片都对应一个特定的缺陷类型。
数据说明
- 图片格式:所有图片均为标准图像格式,适合用于计算机视觉任务。
- 标签格式:标签文件详细描述了每张图片中的缺陷类型及其位置信息,便于进行目标检测和分类任务。
问题描述
钢材表面缺陷数据集广泛应用于工业检测领域,特别是在自动化生产线中,用于实时监测和识别钢材表面的缺陷,以确保产品质量。本数据集为研究人员和工程师提供了一个标准化的数据集,用于开发和测试钢材表面缺陷检测算法。
使用建议
- 本数据集适用于计算机视觉、机器学习和深度学习领域的研究人员和工程师。
- 建议使用本数据集进行目标检测、图像分类和缺陷识别等相关任务的训练和测试。
致谢
感谢东北大学宋克臣团队为本数据集的制作和发布所做的贡献。