YOLOv5疲劳驾驶数据集
简介
本仓库提供了一个用于疲劳驾驶检测的YOLOv5数据集。该数据集包含了2914张图片,标签格式为txt格式,适用于训练和验证疲劳驾驶检测模型。数据集的类别包括:闭眼(closed_eye)、闭嘴(closed_mouth)、睁眼(open_eye)和开口(open_mouth)。
数据集结构
- 训练集:2331张图片(80%)
- 验证集:583张图片(20%)
标签格式
每张图片对应的标签文件为txt格式,文件名与图片名相同,仅扩展名不同。标签文件中的每一行代表一个目标框,格式如下:
<类别编号> <中心点x坐标> <中心点y坐标> <宽度> <高度>
- 类别编号:
- 0: closed_eye
- 1: closed_mouth
- 2: open_eye
- 3: open_mouth
使用说明
- 下载本仓库中的数据集文件。
- 将数据集解压到YOLOv5项目的
data
目录下。 - 根据需要修改YOLOv5的配置文件,指定数据集路径和类别信息。
- 运行训练脚本进行模型训练。
注意事项
- 数据集已经按照8:2的比例划分好了训练集和验证集,可以直接使用。
- 请确保在训练前检查数据集的完整性和正确性。
贡献
如果您有任何改进建议或发现了数据集中的问题,欢迎提交Issue或Pull Request。
许可证
本数据集遵循MIT许可证,允许自由使用和分发。