熵权TOPSIS的Python代码
资源描述
本资源提供了一个用于实现熵权TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)算法的Python代码。熵权TOPSIS是一种多属性决策分析方法,用于评估多个候选方案的优劣。该方法结合了熵权法和TOPSIS方法,旨在解决属性权重不确定性和属性间相互影响的问题。
算法步骤
以下是熵权TOPSIS算法的主要步骤:
-
准备数据:将所有候选方案的各属性值构成一个决策矩阵。
-
归一化数据:对决策矩阵进行归一化处理,使得每个属性值都处于相同的量纲范围内。常见的归一化方法包括最小-最大归一化、标准化等。
-
计算权重:使用熵权法计算每个属性的权重。首先计算每个属性的熵,然后计算属性的信息增益,并将其转化为权重。
-
构造加权正向理想解和加权负向理想解:根据归一化后的决策矩阵以及属性权重,计算出加权正向理想解和加权负向理想解。加权正向理想解的每个属性值都是该属性在决策矩阵中的最大值,而加权负向理想解的每个属性值都是该属性在决策矩阵中的最小值。
-
计算方案与理想解的接近程度:计算每个候选方案与加权正向理想解的接近程度以及与加权负向理想解的接近程度。常见的计算方法是使用欧几里德距离或曼哈顿距离等。
使用说明
-
下载代码:请下载本仓库中的Python代码文件。
-
准备数据:根据实际情况准备决策矩阵数据,并将其格式化为代码所需的输入格式。
-
运行代码:运行Python代码,输入决策矩阵数据,代码将自动计算出每个候选方案的熵权TOPSIS评分。
-
结果分析:根据计算结果,评估各个候选方案的优劣,并进行相应的决策分析。
注意事项
- 请确保输入的决策矩阵数据格式正确,否则可能导致计算错误。
- 代码中使用的归一化方法和距离计算方法可以根据实际需求进行调整。
- 如有任何问题或建议,欢迎在仓库中提出Issue或Pull Request。
贡献
欢迎对本代码进行改进和优化,如果您有任何改进建议或新的功能需求,请提交Pull Request。
许可证
本代码遵循MIT许可证,详情请参阅LICENSE文件。