MATLAB神经网络工具箱代码导出 - ResNet18

MATLAB神经网络工具箱代码导出 - ResNet18

【下载地址】MATLAB神经网络工具箱代码导出-ResNet18 本资源文件提供了将MATLAB神经网络工具箱代码导出为ResNet-18的功能。ResNet-18是一个卷积神经网络,它在来自ImageNet数据库的超过一百万张图像上进行了训练。通过训练,网络已经为各种图像学习了丰富的特征表示。该网络可以将图像分为1000个对象类别,例如键盘、鼠标、铅笔和许多动物。该网络的图像输入大小为224×224×3 【下载地址】MATLAB神经网络工具箱代码导出-ResNet18 项目地址: https://gitcode.com/open-source-toolkit/a12fb

描述

本资源文件提供了将MATLAB神经网络工具箱代码导出为ResNet-18的功能。ResNet-18是一个卷积神经网络,它在来自ImageNet数据库的超过一百万张图像上进行了训练。通过训练,网络已经为各种图像学习了丰富的特征表示。该网络可以将图像分为1000个对象类别,例如键盘、鼠标、铅笔和许多动物。该网络的图像输入大小为224×224×3。

使用方法

此存储库需要MATLAB(R2018b及更高版本)和深度学习工具箱。该存储库提供以下三个功能:

1. resnet18Layers

使用ResNet-18的网络架构创建未经训练的网络。要从头开始训练网络,请在MATLAB命令行中键入以下内容:

lgraph = resnet18Layers;

未经训练的网络将作为layerGraph对象返回。

2. assembleResNet18

要构建适用于图像分类的经过训练的ResNet-18网络,请在MATLAB命令行中键入以下内容:

net = assembleResNet18;

经过训练的网络将作为DAGNetwork对象返回。

3. 图像分类

要使用网络对图像进行分类,请执行以下步骤:

img = imresize(imread('peppers.png'), [224 224]);
predictedLabels = classify(net, img);

注意事项

  • 确保已安装MATLAB R2018b或更高版本。
  • 确保已安装深度学习工具箱。
  • 图像输入大小必须为224×224×3。

通过以上步骤,您可以轻松地将ResNet-18应用于图像分类任务。

【下载地址】MATLAB神经网络工具箱代码导出-ResNet18 本资源文件提供了将MATLAB神经网络工具箱代码导出为ResNet-18的功能。ResNet-18是一个卷积神经网络,它在来自ImageNet数据库的超过一百万张图像上进行了训练。通过训练,网络已经为各种图像学习了丰富的特征表示。该网络可以将图像分为1000个对象类别,例如键盘、鼠标、铅笔和许多动物。该网络的图像输入大小为224×224×3 【下载地址】MATLAB神经网络工具箱代码导出-ResNet18 项目地址: https://gitcode.com/open-source-toolkit/a12fb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卢枫岱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值