IEEE各节点系统接线图(VISIO版)

IEEE各节点系统接线图(VISIO版)

项目地址:https://gitcode.com/open-source-toolkit/8cc65

概述

本仓库提供了一套详尽的电力系统接线图资源,专为电气工程领域的研究者、工程师及学者设计。此资源覆盖了IEEE标准中的多个典型系统,包括3节点、5节点、9节点、10节点、11节点、13节点、14节点以及30节点的系统模型。这些接线图以Microsoft VISIO的形式绘制,并集成在WORD文档中,旨在简化和加速您的研究与教学过程。

资源详情

  • 接线图:每一套接线图都是基于工业标准精心构建,展示了不同规模电力系统的结构布局,便于理解和分析。
  • 适用软件:所有图表均在Microsoft Visio中绘制,确保了高度的自定义性。用户可以轻松打开、编辑接线图的细节,以适应不同的研究需求或教学示例。
  • 配套参数文档:除了图形外,还提供了详细的参数文档,帮助用户理解每个节点的特性及相互间的连接关系,这对于仿真分析极为重要。
  • 便捷性:将复杂的电力系统理论转化为直观的视觉资料,极大提高了工作效率,不论是用于学术报告、课程演示还是系统仿真项目都极为合适。

使用指南

  1. 下载资源:从仓库页面直接下载ZIP文件或通过Git clone命令获取资源。
  2. 软件要求:确保你的计算机已安装Microsoft Office(特别是Visio)和Word,以便于查看和编辑接线图及其说明文档。
  3. 编辑与应用:利用Visio打开接线图,根据需要进行调整和定制。Word文档内的说明可以帮助理解每个接点的技术参数。
  4. 注意事项:在对原始文件进行修改时,建议先备份原文件,避免意外丢失重要数据。

版权与贡献

本资源遵循开放源代码的原则分享,鼓励学习与交流,但请尊重原作者的版权,不得用于商业目的未经许可的二次分发。如果你有任何改进意见或额外的资源想要贡献,请发起Pull Request或在仓库的Issues区留言。

加入我们,共同推进电力系统教育和研究的进步!


希望这份 README.md 能帮助访问者快速了解并有效利用这一宝贵的学术资源。

IEEE各节点系统接线图VISIO版 本仓库提供了一套详尽的电力系统接线图资源,专为电气工程领域的研究者、工程师及学者设计。此资源覆盖了IEEE标准中的多个典型系统,包括3节点、5节点、9节点、10节点、11节点、13节点、14节点以及30节点的系统模型。这些接线图以Microsoft VISIO的形式绘制,并集成在WORD文档中,旨在简化和加速您的研究与教学过程。 IEEE各节点系统接线图VISIO版 项目地址: https://gitcode.com/open-source-toolkit/8cc65

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

非常抱歉,我之前提供的代码存在错误。在 PyTorch 中,并没有直接提供离散余弦变换(DCT)的函数。对于 DCT 的实现,你可以使用 `torch.rfft` 函数结合 DCT 系数矩阵来进行计算。 下面是一个修正后的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim # 定义离散余弦变换(DCT)系数矩阵 dct_matrix = torch.zeros(256, 256) for i in range(256): for j in range(256): dct_matrix[i, j] = torch.cos((2 * i + 1) * j * 3.14159 / (2 * 256)) # 定义 OMP 算法 def omp(A, y, k): m, n = A.shape x = torch.zeros(n, 1) residual = y.clone() support = [] for _ in range(k): projections = torch.abs(A.t().matmul(residual)) index = torch.argmax(projections) support.append(index) AtA_inv = torch.linalg.inv(A[:, support].t().matmul(A[:, support])) x_new = AtA_inv.matmul(A[:, support].t()).matmul(y) residual = y - A[:, support].matmul(x_new) x[support] = x_new return x # 加载原始图像 image = torch.randn(256, 256) # 压缩感知成像 measurement_matrix = torch.fft.fft(torch.eye(256), dim=0).real compressed = measurement_matrix.matmul(image.flatten().unsqueeze(1)) # 使用 OMP 进行重构 reconstructed = omp(dct_matrix, compressed, k=100) # 计算重构误差 mse = nn.MSELoss() reconstruction_error = mse(image, reconstructed.reshape(image.shape)) print("重构误差:", reconstruction_error.item()) ``` 在这个示例中,我们手动定义了 DCT 系数矩阵 `dct_matrix`,然后使用 `torch.fft.fft` 函数计算测量矩阵,并进行实部提取。接下来的步骤与之前的示例相同。 请注意,这只是一个示例,用于演示如何使用自定义的 DCT 系数矩阵进行压缩感知成像。在实际应用中,你可能需要根据具体的需求进行调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周斐灿Phoebe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值