FJSP 柔性作业车间Kacem01-05全部算例

FJSP 柔性作业车间Kacem01-05全部算例

Kacem算例.zip项目地址:https://gitcode.com/open-source-toolkit/46cfa

简介

本仓库提供了一系列FJSP(柔性作业车间调度问题)的算例,具体包括Kacem01-05的全部算例。这些算例旨在帮助研究者更好地验证其算法在FJSP中的可行性和有效性。

资源文件描述

  • 标题: FJSP 柔性作业车间Kacem01-05全部算例
  • 描述: 该算例可以帮助研究者更好地验证自己的算法可行性于FJSP中

使用方法

  1. 下载资源: 您可以直接从本仓库下载Kacem01-05的全部算例文件。
  2. 算法验证: 将下载的算例文件导入到您的算法中,进行验证和测试。
  3. 结果分析: 通过对比算例的预期结果与您的算法输出结果,评估算法的性能和准确性。

贡献

如果您有新的FJSP算例或改进建议,欢迎提交Pull Request或Issue,我们将非常乐意与您合作,共同完善本仓库。

许可证

本仓库的内容遵循开源许可证,具体信息请参阅LICENSE文件。

联系我们

如有任何问题或建议,请通过Issue或邮件联系我们。


希望这些算例能够帮助您在FJSP研究中取得更好的成果!

Kacem算例.zip项目地址:https://gitcode.com/open-source-toolkit/46cfa

### FJSP标准集及其解析方法 #### 集概述 FJSP柔性作业车间调度问题)的标准集通常用于评估不同法的有效性和效率。这些集提供了多种场景下的数据,以便研究者能够测试其提出的解决方案在实际应用中的表现。常见的FJSP集包括Kacem、Brandimarte实以及Dauzère-Pérès和Lasserre实等。 #### Kacem Kacem等人提出了一个广泛使用的FJSP集合[Kacem et al., 2002][^1]。此集合包含了若干个不同的案,每个案定义了一组特定数量的工作件和机器,并规定了每项工作的工艺路线选项及相应的加工时间。通过调整参数如工作量大小、可用资源数目等因素,可以模拟各种复杂的生产环境。 #### Brandimarte 实 Brandimarte构建了一系列基于随机生成规则的FJSP测试问题[Brandimarte, 1993][^2]。这类实的特点在于它们能代表不同类型的实际制造系统特征,从而使得所开发的方法更具普适性。具体来说,Brandimarte的数据集中考虑到了多道工序的选择灵活性,这增加了求解难度同时也提高了模型的真实性。 #### Dauzère-Pérès 和 Lasserre 实 Dauzère-Pérès与Lasserre共同设计的一套FJSP基准测试集[Dauzère-Pérès & Lasserre, 1997][^3]同样被频繁引用作为评价新法性能的基础。这套数据不仅涵盖了广泛的规模范围内的问题设定,而且特别强调了对于复杂约束条件的支持,如有限缓冲区容量限制或并行机设置下任务分配策略的影响分析。 #### 解析方法 针对上述提到的各种类型的FJSP,在解析过程中一般会遵循以下几个步骤: - **输入读取**:从文件或其他形式获取原始数据,包括但不限于工件列表、各阶段所需的设备清单及其对应的处理周期。 - **预处理**:对收集到的信息做必要的转换和整理,确保后续计过程顺利进行;可能涉及去除冗余信息、填补缺失值等工作。 - **建模**:依据具体的业务逻辑建立数学规划模型或者启发式框架来描述整个系统的运作机制;此时应充分考虑到所有潜在变量之间的相互关系。 - **求解器配置**:选择合适的优化工具包实施迭代运直至找到最优解或是满意程度较高的近似方案;期间可根据实际情况调节各类超参以提升收敛速度/质量。 - **结果验证**:对比理论预期同实验所得之间是否存在显著差异;如果发现异常则返回前几步重新审视假设前提是否合理可靠。 ```python import pandas as pd def load_fjsp_instance(file_path): """加载FJSP""" data = pd.read_csv(file_path) jobs = [] machines = set() operations = [] for index, row in data.iterrows(): job_id = int(row['job']) machine_options = list(map(int, str.split(str(row['machines']), ', '))) time_options = list(map(float, str.split(str(row['times']), ', '))) jobs.append(job_id) machines.update(machine_options) operation = { "job": job_id, "machine_options": machine_options, "time_options": time_options } operations.append(operation) return {"jobs": jobs, "machines": list(machines), "operations": operations} file_path = './data/fjsp_example.csv' instance_data = load_fjsp_instance(file_path) print(instance_data) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裴涓斐Kathy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值