【车间调度】柔性作业车间调度问题的研究现状

本文探讨了柔性作业车间调度的现状,包括单目标、多目标和不确定环境下的问题。柔性生产线适应性强,能应对多种产品需求。研究涉及遗传算法、禁忌搜索、模拟退火等多种优化方法。多目标调度考虑了目标之间的不可公度性和矛盾性,动态调度则关注不确定性因素的影响。

本系列为自己学习调度相关知识的记录,如有误请指出,也欢迎调度方向的小伙伴加我好友共同交流

“柔性”是相对于“刚性”而言的,传统的==“刚性”自动化生产线主要实现单一品种的大批量生产==。而==“柔性”生产线可以在较短的生产周期内,生产出较低成本、较高质量的不同品种产品==。柔性一般主要包括:机器柔性、工艺柔性、产品柔性、维护柔性、生产能力柔性、扩展柔性和运行柔性等。

单目标柔性作业车间调度

FJSP的目标函数一般包括:最大完工时间最小、总完工时间最小、最大负荷的机器负荷最小、提前/拖期惩罚最小、设备空闲时间最小等。单目标FJSP只是针对其中一个目标进行优化,最常见的是最大完工时间最小。Hurinl、Chen、Kacem利用GA,以最大完工时间最小为目标求解FJSP。Neifar将插入式启发式方法和GA混合进行求解。Pezzella采用多种交叉方法和多种变异方法混合的GA求解FJSP,取得了较好的优化结果。Scrich、Zribi等利用TS求解总拖期最小的FJSP。zhao利用GA,同时引入虚拟和真实工序的概念对拖期最小的FJSP进行求解。Wu利用多代理方法对提前/拖期最小进行优化。Imanipour、Guimaraes求解带有独立时间约束的FJSP问题。Saidi-Mehrabad在考虑有独立安装时间的情况下利用TS对FJSP进行了研究。Rossi在考虑安装时间的情况下增加了运输时间的条件,利用蚁群算法进行求解,直接考虑车间实际的生产情况。Zribi考虑资源约束情况下的FJSP,对机器资源的使用进行研究。天津大学的张维存采用蚁群算法与遗传算法混合的方法,对能力约束下的FJSP进行研究,以设备的最小空闲时间为目标。浙江工业大学的王万良采用改进的蚁群算法,提出机器选择规则,对信息素进行调整使得快速搜索全局最优解。Mastrolilli对FJSP的邻域结构进行研究,设计出较好的邻域结构,对利用TS求解FJSP影响较大。Ong利用免疫算法同时结合无性选择原则求解FJSP,取得了较好的效果。上海理工大学的柳毅将免疫算法与遗传算法相结合求解FJSP。Najid以改进的模拟退火为主,

### 柔性作业车间调度问题的概念与算法 #### 1. 柔性作业车间调度问题的定义 柔性作业车间调度问题(Flexible Job Shop Scheduling Problem, FJSP)是一个典型的组合优化问题,涉及个工件在不同机器上的加工顺序安排。该问题的特点在于每道工序可以由一组可用的机器完成,而不是固定的一台机器[^1]。这种灵活性增加了问题复杂度,同时也提供了更的优化空间。 FJSP 的主要目标通常包括最小化最大完工时间(makespan)、减少总延迟时间、降低能源消耗等指标。由于其 NP 难性质,传统精确方法难以有效求解大规模实例,因此近年来许元启发式算法被广泛应用于这一领域。 --- #### 2. 改进型鲸鱼优化算法的应用 鲸鱼优化算法(Whale Optimization Algorithm, WOA)是一种受座头鲸捕猎行为启发的群体智能优化算法,在连续域优化问题中表现出色。为了应对 FJSP 中离散决策变量的特点,本文提出了一种改进的目标鲸鱼优化算法(Improved Multi-objective Whale Optimization Algorithm, IMWOA)。IMWOA 主要针对以下两个目标进行了优化: - **最大化完工时间**:通过合理分配资源和任务优先级,缩短整体生产周期。 - **生产能耗**:考虑绿色制造需求,降低单位产品生产的能量损耗。 实验结果显示,IMWOA 能够有效地找到 Pareto 最优解集,并在实际案例测试中展现出较高的实用价值。 --- #### 3. 灰狼优化算法的作用 灰狼优化算法(Grey Wolf Optimizer, GWO)同样属于一种群智能优化技术,模仿自然界中灰狼的社会等级结构及其狩猎过程来进行全局搜索。对于 FJSP 来说,GWO 展现出以下几个优势特性: - 较高的收敛速度; - 对于高维复杂函数的良好探索能力; - 参数设置简单直观。 尽管如此,标准版 GWO 存在早熟收敛的风险,尤其是在处理高度约束条件下的调度场景时可能陷入局部最优解。为此,研究人员尝试引入种机制对其进行增强,比如自适应权重因子调节或者混合其他进化算子来提升性能表现[^2]。 --- #### 4. 目标优化算法对比分析 除了上述提到的方法外,《目标应用》一文中还探讨了几种主流目标优化算法在解决 FJSP 方面的表现情况,具体如下表所示[^3]: | 方法名称 | 特征描述 | |----------------|---------------------------------------------------------------------------------------------| | NSGA-II | 利用快速非支配排序操作构建帕累托前沿;采用拥挤距离维护个体分布均匀程度 | | NSPSO | 结合粒子群优化框架实现目标寻优功能 | | NSDBO | 基于差分演化原理设计而成 | | NSCOA | 引入小龙虾觅食模型作为基础架构 | 这些算法各有千秋,适用于不同类型的实际工业环境。例如当追求计算效率较高而精度稍次的情况下可以选择 PSO 类变体;如果希望获得更加精细的结果则推荐使用 GA 或 DE 衍生版本等等。 ```matlab % MATLAB伪代码示例 - 使用NSGA-II求解FJSP function [pop,Fitness]=nsga_ii(popSize,maxGen) % 初始化种群... end ``` ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值