自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

ZayneHuang的博客

黄泽远的博客

  • 博客(116)
  • 收藏
  • 关注

原创 中科院软件所智能人机交互研发实习生招募

中科院软件所智能人机交互研发实习生招募,参与前沿课题研究、培养科研能力,速来申请,欢迎你的到来!

2022-08-12 00:10:15 982 1

原创 iPad/iPhone等设备访问Windows共享文件方法

分享通过Windows的SMB文件共享在设备间分享文件的方法。

2021-11-01 18:47:03 12951 2

原创 VSCode Remote SSH无法连接问题的解决方法

VSCode用Remote SSH无法连接远程服务器的解决方法:删除服务器文件、删除本地配置文件。亲测有效!

2021-10-28 23:36:48 40900 6

原创 TFLearn载入模型NotFoundError: Key ...BatchNormalization/is_training not found in checkpoint解决方法

使用TFLearn来载入AffectNet的TrainedNetwork时,报错NotFoundError: Key ResNeXtBlock/BatchNormalization/is_training not found in checkpoint。是模型和代码不匹配导致的,通过inspect_checkpoint查看发现模型中is_training为False,在batch_normalization函数中参数trainable默认为True,可能存在冲突。将trainable修改为False后解决。

2020-04-01 22:01:41 1589

原创 台大机器学习基石 Lecture 16 - Three Learning Principles

本次Lecture介绍了机器学习中比较常用的三个“锦囊妙计”。Occam's Razor奥卡姆剃刀定律(Occam’s Razor),总结而言就是“如无必要,勿增实体”,要用尽可能简单且有好效果的方法来处理数据。那么就有两个问题:什么样的模型是“简单的”?简单的模型一方面指hypothesis比较简单,也就是模型的参数比较少;另一方面指模型的hypotheses有限不太多。这两者是...

2019-02-26 00:24:37 221

原创 台大机器学习基石 Lecture 15 - Validation

本次Lecture介绍了通过validation的方法来帮助我们选择模型并在没有测试集的情况下评价模型好坏,保证训练的模型有良好的泛化能力。Model Selection Problem上面这幅图就说明,就算是一个最简单的二元分类问题,都要涉及算法A、迭代次数T、步长、特征转换方法、正则regularizer、正则参数这些选择,他们叠加起来会形成不同的机器学习效果,因此我们要找到合...

2019-02-25 22:25:03 224

原创 台大机器学习基石 Lecture 14 - Regularization

本次Lecture主要讲解了解决overfitting问题的方法——Regularization正则化Regularized Hypothesis Set我们在上节课知道,当用一个高次的多项式对target function进行拟合的时候,就会出现小而大的情况,这就是过拟合(overfitting)。而当用较低次的多项式进行拟合的时候,就能够得到左边这样比较良好的效果。于是,这...

2018-08-12 19:34:24 236

原创 台大机器学习基石 Lecture 13 - Hazard of Overfitting

本次Lecture主要介绍机器学习中很重要的问题:过拟合(overfitting),并且介绍了部分解决过拟合问题的方法。What is Overfitting?先通过一个例子来介绍bad generalization。假设平面上有5个点,目标函数是2阶多项式:如果hypothesis是二阶多项式加上一些小的noise的话,那么这5个点很靠近这个hypothesis,很小。...

2018-08-08 21:59:59 986

原创 台大机器学习基石 Lecture 12 - Nonlinear Transformation

本次Lecture主要是讲述如何将非线性问题变成线性问题来求解。Quadratic Hypotheses我们之前看到的都是线性的得分函数,这样在二维上是一条直线,三维上是一个平面。在不具有线性性质的情况下,尽管比较小,能保证,但是在一些数据上会很大,这样的结果就不太理想了。 就像在上图的左图中,我们可以用一个圆来划分,圆形内部是正类,外面是负类。假设它的hypotheses...

2018-08-06 22:03:24 165

原创 台大机器学习基石 Lecture 11 - Linear Models for Classification

这次Lecture总结比较了已经学习的三种模型优缺点,引入SGD来优化Logistic Regression,讲解了Multiclass Classification中的OVA和OVO方法。Linear Models for Binary Classification之前三种线性模型都是对样本特征x的加权运算,我们引入一个线性得分函数(linear scoring function)s...

2018-08-05 20:37:14 247

原创 台大机器学习基石 Lecture 10 - Logistic Regression

这次Lecture讲的是另一种回归方法——逻辑回归(Logistic Regression),虽然说的是回归问题,但它其实是一个‘软’分类,本次课介绍了逻辑回归的方法、错误衡量方法、求解最优的方法。Logistic Regression Problem之前提过的二元分类器如PLA,其目标函数为,,是一个“硬”的分类器。而Logistic Regression的输出是的概率,因此Logi...

2018-08-02 17:44:57 184

原创 台大机器学习基石 Lecture 9 - Linear Regression

这节课开始介绍一些常见算法,这次Lecture介绍了最常见的Linear Regression线性回归算法。Linear Regression Problem在Linear Regression模型下的hypothesis为,特征集为d维,加上常数项后就为d + 1维(所以注意i从0开始)。在线性回归中,误差的衡量常采用平方误差(squared error):,相关的记号已经在上一节课...

2018-08-01 21:25:59 307

原创 台大机器学习基石 Lecture 8 - Noise and Error

本次Lecture主要讲了在存在Noise噪声的情况下,是否能够进行机器学习,VC Dimension是否还有作用,并且介绍了一些评价Model的Error度量方法,这是要根据实际问题来确定的。Noise and Probablistic Target数据集D存在噪声的情况下,是否还能学习呢?Noise主要来源于以下三种—— 由于人为因素,正类被误分为负类,或者负类被误分为正...

2018-07-30 22:12:08 239

原创 台大机器学习基石 Lecture 7 - The VC Dimension

本次Lecture主要介绍VC Dimension,从non-break point的角度来看之前break point对VC Bound的影响。最终得出结论要选择合适的来同时保证较小的和较低的模型复杂度。Recap通过上节课的证明,我们知道了有多项式上界,这是在的条件下的。我们又得到了VC Bound,这是在M无限的前提下的Hoeffding不等式,那么我们将代入VC Bound...

2018-07-28 17:20:18 255

原创 台大机器学习基石 Lecture 6 - Theory of Generalization

这节课基于上节课与break point的关联,研究了的上界是否为多项式的问题,得到结论为多项式上界,并将其代入Hoeffding不等式,得到VC Bound,证明只要break point存在,机器学习就是可行的。Restriction of Break Point我们先看一下四个成长函数与break point的关系:成长函数是一个hypothesis在N个数据点上可以产生...

2018-07-28 10:17:08 268

原创 台大机器学习基石 Lecture 5 - Training versus Testing

本次Lecture先将之前一部分对“When Can Machines Learn”中的内容梳理了一下,归结为机器学习的两个核心问题:??然后研究在无限hyphothesis set上如何归类,成为一个在有限的M上(也就是)的问题,并且试图求出,并探讨其什么时候是非指数形式,这样机器学习才有效。Recap and Preview我们在之前的课程中得出的结论:只要数据集足够大,hypho...

2018-07-27 15:37:39 189

原创 LeetCode 824. Goat Latin

题目链接:https://leetcode.com/problems/goat-latin/description/A sentence S is given, composed of words separated by spaces. Each word consists of lowercase and uppercase letters only.We would like to...

2018-07-26 21:54:47 215

原创 LeetCode 58. Length of Last Word

题目链接:https://leetcode.com/problems/length-of-last-word/description/Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return the length of last word in the stri...

2018-07-26 20:50:57 127

原创 台大机器学习基石 Lecture 4 - Feasibility of Learning

这次Lecture主要讨论的是有限假设下的机器学习可行性。我们为什么能通过算法选出的定作,而又为什么一定与相接近呢?Learning is Impossible?这一部分主要讨论了这么一个问题:能够在数据集上满足的是否一定能有?上图就说明了,在以外的数据中更接近目标函数是不确定的,而我们希望机器学习能做到所选模型能在数据集之外也有与真实结果一致的预测结果,而不是仅限于数据集中。...

2018-07-26 20:24:08 185

原创 LeetCode 537. Complex Number Multiplication

题目链接:https://leetcode.com/problems/complex-number-multiplication/description/Given two strings representing two complex numbers.You need to return a string representing their multiplication. Note...

2018-07-26 13:55:19 119

原创 LeetCode 763. Partition Labels

题目链接:https://leetcode.com/problems/partition-labels/description/A string S of lowercase letters is given. We want to partition this string into as many parts as possible so that each letter appears...

2018-07-26 12:56:57 158

原创 LeetCode 872. Leaf-Similar Trees

题目链接:https://leetcode.com/problems/leaf-similar-trees/description/Consider all the leaves of a binary tree.  From left to right order, the values of those leaves form a leaf value sequence.For ...

2018-07-26 12:25:54 246

原创 LeetCode 561. Array Partition I

题目链接:https://leetcode.com/problems/array-partition-i/description/Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), ..., (an, bn) w...

2018-07-26 12:14:35 143

原创 LeetCode 728. Self Dividing Numbers

题目链接:https://leetcode.com/problems/self-dividing-numbers/description/A self-dividing number is a number that is divisible by every digit it contains.For example, 128 is a self-dividing number bec...

2018-07-26 11:46:01 128

原创 LeetCode 797. All Paths From Source to Target

题目链接:https://leetcode.com/problems/all-paths-from-source-to-target/description/Given a directed, acyclic graph of N nodes.  Find all possible paths from node 0 to node N-1, and return them in any o...

2018-07-26 11:35:53 150

原创 LeetCode 814. Binary Tree Pruning

题目链接:https://leetcode.com/problems/binary-tree-pruning/description/We are given the head node root of a binary tree, where additionally every node's value is either a 0 or a 1.Return the same tre...

2018-07-25 14:18:43 147

原创 LeetCode 861. Score After Flipping Matrix

题目链接:https://leetcode.com/problems/score-after-flipping-matrix/description/We have a two dimensional matrix A where each value is 0 or 1.A move consists of choosing any row or column, and togglin...

2018-07-25 14:03:41 168

原创 LeetCode 654. Maximum Binary Tree(O(n)方法!)

题目链接:https://leetcode.com/problems/maximum-binary-tree/description/题目解析:应该很容易想到的是递归做法,分别在左右两侧分治法即可,需要每次都遍历一次子数组,肯定比较慢emmmmm看到Discuss里面C++ O(N) solution帖子中有的方法,非常精妙!感谢@mrsuyi~主要的思路是用一个vector维护一个递...

2018-07-25 10:02:35 204

原创 LeetCode 617. Merge Two Binary Trees

题目链接:https://leetcode.com/problems/merge-two-binary-trees/description/题目解析:将T1作为模板,把T2合进来。容易想到的是用递归的方法遍历子树,主要分成三种情况——T1和T2当前节点都存在,那么两者值相加即可,继续分别递归左右子树; T1不存在,T2存在,那么把T1当前空节点赋值为T2当前节点即可,以T2当前节点为根结...

2018-07-25 01:11:15 89

原创 LeetCode 852. Peak Index in a Mountain Array

题目链接:https://leetcode.com/problems/peak-index-in-a-mountain-array/description/题目解析:只要找到非递增点就可以。 代码如下:4ms Accepted beating 100% class Solution {public: int peakIndexInMountainArray(vect...

2018-07-25 01:05:30 86

原创 LeetCode 657. Judge Route Circle

题目链接:https://leetcode.com/problems/judge-route-circle/description/题目解析:只要记下横竖坐标即可,最终如果移动到原点,那么横竖坐标均为0。代码如下:4ms Acceptedclass Solution {public: bool judgeCircle(string moves) { int ...

2018-07-25 00:59:00 136

原创 LeetCode 832. Flipping an Image

题目链接:https://leetcode.com/problems/flipping-an-image/description/题目解析:vector的反转可以很方便使用reverse,然后将0 1对调即可。代码如下:8ms Acceptedclass Solution {public: vector<vector<int>> flipAndInv...

2018-07-25 00:56:42 82

原创 LeetCode 461. Hamming Distance

题目链接:https://leetcode.com/problems/hamming-distance/description/方法一题目解析:从%2的情况来计算,换成二进制来计算差异。代码如下:0ms Acceptedclass Solution {public: int hammingDistance(int x, int y) { int dis ...

2018-07-25 00:52:00 86

原创 LeetCode 804. Unique Morse Code Words

题目链接:https://leetcode.com/problems/unique-morse-code-words/description/题目解析:字符串去重用set即可。代码如下:0ms Acceptedclass Solution {public: int uniqueMorseRepresentations(vector<string>& wo...

2018-07-25 00:38:32 74

原创 LeetCode 709. To Lower Case

题目链接:https://leetcode.com/problems/to-lower-case/description/题目解析:没什么特别的,善用STL。代码如下:0ms Acceptedclass Solution {public: string toLowerCase(string str) { transform(str.begin(), str....

2018-07-24 21:40:38 120

原创 LeetCode 807. Max Increase to Keep City Skyline

题目链接:https://leetcode.com/problems/max-increase-to-keep-city-skyline/description/题目解析:的做法,找到Column和Row中的最大值,然后sum加上当前位置横纵数值的min与当前高度之差即可。有个小优化是,在循环里面同时找出横纵的最大值,可以减少数组读取。代码如下:0ms Acceptedclass...

2018-07-24 21:38:14 108

原创 LeetCode 771. Jewels and Stones

题目链接:https://leetcode.com/problems/jewels-and-stones/description/题目解析:利用字符的ACSII离散化一下,确定有没有出现即可。代码如下:0ms Acceptedclass Solution {public: int numJewelsInStones(string J, string S) { ...

2018-07-24 21:31:27 101

原创 台大机器学习基石 Lecture 3 - Types of Learning

本章主要讲了不同的学习方法,主要有Output Space, Data Label, Protocol, Input Space四个方面。在上图[ ]以及后文中黄色标记的内容为本课程中主要讲解的内容。Learning with Different Output Space binary classification:  multiclass classification:  r...

2018-07-24 15:49:50 156

原创 台大机器学习基石 Lecture 2 - Learning to Answer Y/N (PLA)

Perceptron Hypothesis SetPerceptron : 感知机对于一个假设h(x),结果与权值w和阈值threshold有关。sign(x)函数表示:sign(x > 0) = +1, sign(x < 0) = -1。对二元的h(x),形成如下线性分类:由此,感知机模型成为了一个线性(二分)分类器(linear/binary class...

2018-07-21 10:43:22 205

原创 台大机器学习基石 Lecture 1 - The Learning Problem

 What is Machine LearningDefenition:Improving some performance measure with experience computed from data. An alternative route to build complicated systems.Key Essence:exists some ‘underl...

2018-07-20 17:55:17 128

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除