题目链接:https://leetcode.com/problems/score-after-flipping-matrix/description/
We have a two dimensional matrix
A
where each value is0
or1
.A move consists of choosing any row or column, and toggling each value in that row or column: changing all
0
s to1
s, and all1
s to0
s.After making any number of moves, every row of this matrix is interpreted as a binary number, and the score of the matrix is the sum of these numbers.
Return the highest possible score.
Example 1:
Input: [[0,0,1,1],[1,0,1,0],[1,1,0,0]] Output: 39 Explanation: Toggled to [[1,1,1,1],[1,0,0,1],[1,1,1,1]]. 0b1111 + 0b1001 + 0b1111 = 15 + 9 + 15 = 39
Note:
1 <= A.length <= 20
1 <= A[0].length <= 20
A[i][j]
is0
or1
.
题目解析:将各个数看作矩阵,将每个数按照数位来分,显然每个数的第一位是要保证都为1的(因为它比 A[i][1] + .. + A[i][m-1] 更大),分成两步——
- 先进行行翻转,让A[i][0] = 0,此时 A[i][j]==1 的条件为A[i][j] == A[i][0];
- 后面的数位从列的角度来看,每列代表一个数位,要让每列有尽可能多的1,比较该列翻转与否中1的个数就可以获得较大值,相加即可。
代码如下:0ms Accepted beating 100%
class Solution {
public:
int matrixScore(vector<vector<int>>& A) {
int n = A.size(), m = A[0].size();
int ans = (1 << (m - 1)) * n;
for (int i = 1; i < m; i++)
{
int num = 0;
for (int j = 0; j < n; j++)
num += (A[j][i] == A[j][0]);
ans += max(num, n - num) * (1 << (m - i - 1));
}
return ans;
}
};