LeetCode 861. Score After Flipping Matrix

题目链接:https://leetcode.com/problems/score-after-flipping-matrix/description/

We have a two dimensional matrix A where each value is 0 or 1.

A move consists of choosing any row or column, and toggling each value in that row or column: changing all 0s to 1s, and all 1s to 0s.

After making any number of moves, every row of this matrix is interpreted as a binary number, and the score of the matrix is the sum of these numbers.

Return the highest possible score.

 

Example 1:

Input: [[0,0,1,1],[1,0,1,0],[1,1,0,0]]
Output: 39
Explanation:
Toggled to [[1,1,1,1],[1,0,0,1],[1,1,1,1]].
0b1111 + 0b1001 + 0b1111 = 15 + 9 + 15 = 39

 

Note:

  1. 1 <= A.length <= 20
  2. 1 <= A[0].length <= 20
  3. A[i][j] is 0 or 1.

题目解析:将各个数看作矩阵,将每个数按照数位来分,显然每个数的第一位是要保证都为1的(因为它比 A[i][1] + .. + A[i][m-1] 更大),分成两步——

  • 先进行行翻转,让A[i][0] = 0,此时 A[i][j]==1 的条件为A[i][j] == A[i][0];
  • 后面的数位从列的角度来看,每列代表一个数位,要让每列有尽可能多的1,比较该列翻转与否中1的个数就可以获得较大值,相加即可。

代码如下:0ms Accepted beating 100%

class Solution {
public:
    int matrixScore(vector<vector<int>>& A) {
        int n = A.size(), m = A[0].size();
        int ans = (1 << (m - 1)) * n;
        for (int i = 1; i < m; i++)
        {
            int num = 0;
            for (int j = 0; j < n; j++)
                num += (A[j][i] == A[j][0]);
            ans += max(num, n - num) * (1 << (m - i - 1));
        }
        return ans;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值