扩散模型从原理到实践-任务一 介绍扩散模型

本文详细介绍了如何从头创建一个自定义的扩散模型,包括加载数据、训练UNet模型、使用调度器添加噪声、以及利用HuggingFaceAPI进行多GPU加速和模型上传。教程涵盖了基础知识到实践应用的过程。
摘要由CSDN通过智能技术生成

教程地址

扩散模型从原理到实践,第一单元教程地址:https://github.com/darcula1993/diffusion-models-class-CN/blob/main/unit1/01_introduction_to_diffusers_CN.ipynb

环境:

windows 10
git bash
conda
编码-utf-8
jupyterlab

即将学到的知识点

  • 看到一个强大的自定义扩散模型管道 (并了解到如何制作一个自己的版本)
  • 通过以下方式创建你自己的迷你管道:
  • 回顾扩散模型背后的核心思想
  • 从 Hub 中加载数据进行训练
  • 探索如何使用 scheduler 将噪声添加到数据中
  • 创建和训练一个 UNet 模型
  • 将各个组件拼装在一起来形成一个工作管道 (working pipelines)
  • 编辑并运行一个脚本,用于初始化一个较长的训练,该脚本将处理
  • 使用 Accelerate 来进行多 GPU 加速训练
  • 实验日志记录以跟踪关键统计数据
  • 将最终的模型上传到 Hugging Face Hub

hugging face API

  • 由于hugging face 的模型都比较大,需要用git-lfs,来上传或者下载模型
%%capture
!sudo apt -qq install git-lfs
!git config --global credential.helper store
  • 如果上面没有问题了,可以通过notebook来输入apps tokens,登陆了
#通过hugging face登陆hugging face
from huggingface_hub import notebook_login
notebook_login()

登陆成功的截图
在这里插入图片描述

  • 创建模型,把模型push到hub,创建模型卡,方便随时下载。
from huggingface_hub import get_full_repo_name

model_name = "sd-class-butterflies-32"
hub_model_id = get_full_repo_name(model_name)
hub_model_id

from huggingface_hub import HfApi, create_repo
#在 🤗 Hub 上创建模型仓库并 push 它吧
create_repo(hub_model_id)
api = HfApi()
api.upload_folder(
    folder_path="my_pipeline/scheduler", path_in_repo="", repo_id=hub_model_id
)
api.upload_folder(folder_path="my_pipeline/unet", path_in_repo="", repo_id=hub_model_id)
api.upload_file(
    path_or_fileobj="my_pipeline/model_index.json",
    path_in_repo="model_index.json",
    repo_id=hub_model_id,
)
#创建一个超棒的模型卡
from huggingface_hub import ModelCard

content = f"""
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage

from diffusers import DDPMPipeline

pipeline = DDPMPipeline.from_pretrained('{hub_model_id}')
image = pipeline().images[0]
image
"""

card = ModelCard(content)
card.push_to_hub(hub_model_id)
  • 检验模型是否成功
from diffusers import DDPMPipeline

image_pipe = DDPMPipeline.from_pretrained(hub_model_id)
pipeline_output = image_pipe()
pipeline_output.images[0]
  • accelerate launch 加速上传,windows命令执行失败,可以后续验证一下效果。使用更多数据训练一个更大的模式时,可能所需要用到的内容,如多块 GPU 支持,进度记录和样例图片,用于支持更大 batchsize 的导数记录功能,自动上传模型等等。

diffusers 的核心 API 被分为三个主要部分:

管道: 从高层出发设计的多种类函数,旨在以易部署的方式,能够做到快速通过主流预训练好的扩散模型来生成样本。
模型: 训练新的扩散模型时用到的主流网络架构,e.g. UNet.
管理器 (or 调度器): 在 推理 中使用多种不同的技巧来从噪声中生成图像,同时也可以生成在 训练 中所需的带噪图像。

训练一个扩散模型的流程看起来像是这样:

  • 从训练集中加载一些图像
  • 加入噪声,从不同程度上
  • 把带了不同版本噪声的数据送进模型
  • 评估模型在对这些数据做增强去噪时的表现
  • 使用这个信息来更新模型权重,然后重复此步骤
1.从训练集中加载一些图像

1.调用pytorch,加载数据函数load_dataset(),后将处理的数据,再调dataset.set_transform(),将处理好的数据,传到torch.utils.data.DataLoade,进行构造函数。

import torchvision
from datasets import load_dataset
from torchvision import transforms
#第一步构造dataset,从hugingface加载现成的数据,到本地
dataset = load_dataset("huggan/smithsonian_butterflies_subset", split="train")
#
中间处理数据(伪代码),具体看教程
#第二步,调用pytorch现有函数,对图像进行处理,并通过DataLoader,来构造迭代对象
dataset.set_transform(transform)

# Create a dataloader from the dataset to serve up the transformed images in batches
train_dataloader = torch.utils.data.DataLoader(
    dataset, batch_size=batch_size, shuffle=True
)
#第三步,取Dataloder
xb = next(iter(train_dataloader))["images"].to(device)[:8]
print("X shape:", xb.shape)
show_images(xb).resize((8 * 64, 64), resample=Image.NEAREST)

如果不了解pytorch,简单看下这里
pytorch数据处理pipeline 三步走的 一般格式如下:
参考链接:pytorch 数据预处理三剑客

dataset = MyDataset()           # 第一步:构造Dataset对象
dataloader = DataLoader(dataset)# 第二步:通过DataLoader来构造迭代对象
num_epoches = 100
for epoch in range(num_epoches):# 第三步:逐步迭代数据
for img, label in dataloader:
# 训练代码

最终的效果展示
在这里插入图片描述

2.transforms.Compose() 是pytorch中的图像预处理包,可以对图像处理步骤进行合并,如教程代码所述,先对图像尺寸进行重新定义,然后随机水平裁剪,将图像转变成张量,最后在做归一化。

# Define data augmentations
preprocess = transforms.Compose(
    [
        transforms.Resize((image_size, image_size)),  # Resize
        transforms.RandomHorizontalFlip(),  # Randomly flip (data augmentation)
        transforms.ToTensor(),  # Convert to tensor (0, 1)
        transforms.Normalize([0.5], [0.5]),  # Map to (-1, 1)
    ]
)

PIL图像预处理函数Compose()函数,参考链接:transforms.Compose()函数
在这里插入图片描述

2.加入噪声,从不同程度上

我们的训练计划是,取出这些输入图片然后对它们增添噪声,在这之后把带噪的图片送入模型。在推理阶段,我们将用模型的预测值来不断迭代去除这些噪点。在diffusers中,这两个步骤都是由 管理器(调度器) 来处理的。
噪声管理器决定在不同的迭代周期时分别加入多少噪声。我们可以这样创建一个管理器,是取自于训练并能取样 ‘DDPM’ 的默认配置。 (基于此篇论文 “Denoising Diffusion Probabalistic Models”:

#从扩散模型库获取DDPMScheduler管理,我们迭代1000,每一次增加点点噪音
from diffusers import DDPMScheduler
noise_scheduler = DDPMScheduler(num_train_timesteps=1000)

DDPM 论文这样来描述一个损坏过程,为每一个 ’ 迭代周期 '(timestep) 增添一点少量的噪声。设在某个迭代周期有 x t − 1 x_{t-1} xt1, 我们可以得到它的下一个版本 x t x_t xt (比之前更多一点点噪声):

q ( x t ∣ x t − 1 ) = N ( x t ; 1 − β t x t − 1 , β t I ) q ( x 1 : T ∣ x 0 ) = ∏ t = 1 T q ( x t ∣ x t − 1 ) q (\mathbf {x}_t \vert \mathbf {x}_{t-1}) = \mathcal {N}(\mathbf {x}_t; \sqrt {1 - \beta_t} \mathbf {x}_{t-1}, \beta_t\mathbf {I}) \quad q (\mathbf {x}_{1:T} \vert \mathbf {x}_0) = \prod^T_{t=1} q (\mathbf {x}_t \vert \mathbf {x}_{t-1}) q(xtxt1)=N(xt;1βt xt1,βtI)q(x1:Tx0)=t=1Tq(xtxt1)

这就是说,我们取 x t − 1 x_{t-1} xt1, 给他一个 1 − β t \sqrt {1 - \beta_t} 1βt 的系数,然后加上带有 β t \beta_t βt 系数的噪声。 这里 β \beta β 是根据一些管理器来为每一个 t 设定的,来决定每一个迭代周期中添加多少噪声。 现在,我们不想把这个推演进行 500 次来得到 x 500 x_{500} x500,所以我们用另一个公式来根据给出的 x 0 x_0 x0 计算得到任意 t 时刻的 x t x_t xt:

q ( x t ∣ x 0 ) = N ( x t ; α ˉ t x 0 , ( 1 − α ˉ t ) I ) \begin {aligned} q (\mathbf {x}_t \vert \mathbf {x}_0) &= \mathcal {N}(\mathbf {x}_t; \sqrt {\bar {\alpha}_t} \mathbf {x}_0, {(1 - \bar {\alpha}_t)} \mathbf {I}) \end {aligned} q(xtx0)=N(xt;αˉt x0,(1αˉt)I) where α ˉ t = ∏ i = 1 T α i \bar {\alpha}_t = \prod_{i=1}^T \alpha_i αˉt=i=1Tαi and α i = 1 − β i \alpha_i = 1-\beta_i αi=1βi

数学符号看起来总是很可怕!好在有管理器来为我们完成这些运算。我们可以画出 α ˉ t \sqrt {\bar {\alpha}_t} αˉt (标记为sqrt_alpha_prod) 和 ( 1 − α ˉ t ) \sqrt {(1 - \bar {\alpha}_t)} (1αˉt) (标记为sqrt_one_minus_alpha_prod) 来看一下输入 (x) 与噪声是如何在不同迭代周期中量化和叠加的:

在这里插入图片描述

timesteps = torch.linspace(0, 999, 8).long().to(device)
noise = torch.randn_like(xb)
noisy_xb = noise_scheduler.add_noise(xb, noise, timesteps)
print("Noisy X shape", noisy_xb.shape)
show_images(noisy_xb).resize((8 * 64, 64), resample=Image.NEAREST)

加入噪声后的结果
在这里插入图片描述

线性间距向量返回多个均匀间隔点,参考链接 torch.linspace

torch.linspace(start, end, steps=100, out=None) → Tensor
返回一个1维张量,包含在区间start和end上均匀间隔的step个点。
输出张量的长度由steps决定。
参数:
start (float) - 区间的起始点
end (float) - 区间的终点
steps (int) - 在start和end间生成的样本数
out (Tensor, optional) - 结果张量

torch.randn_like()

torch.randn_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, >memory_format=torch.preserve_format) -> Tensor
返回一个和输入大小相同的张量,其由均值为0、方差为1的标准正态分布填充。即
torch.randn_like(input)等价于torch.randn(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)

3.把带了不同版本噪声的数据送进模型

现在我们来到了核心部分:模型本身。
大多数扩散模型使用的模型结构都是一些 [U-net] 的变形 (https://arxiv.org/abs/1505.04597) 也是我们在这里会用到的结构。
概括来说:
- 输入模型中的图片经过几个由 ResNetLayer 构成的层,其中每层都使图片尺寸减半。
- 之后在经过同样数量的层把图片升采样。
- 其中还有对特征在相同位置的上、下采样层残差连接模块。
模型一个关键特征既是,输出图片尺寸与输入图片相同,这正是我们这里需要的。
Diffusers 为我们提供了一个易用的UNet2DModel类,用来在 PyTorch 创建所需要的结构。
我们来使用 U-net 为我们生成目标大小的图片吧。 
注意这里down_block_types对应下采样模块 (上图中绿色部分), 而>up_block_types对应上采样模块 (上图中红色部分):

在这里插入图片描述

#定义模型
from diffusers import UNet2DModel

# Create a model
model = UNet2DModel(
    sample_size=image_size,  # the target image resolution
    in_channels=3,  # the number of input channels, 3 for RGB images
    out_channels=3,  # the number of output channels
    layers_per_block=2,  # how many ResNet layers to use per UNet block
    block_out_channels=(64, 128, 128, 256),  # More channels -> more parameters
    down_block_types=(
        "DownBlock2D",  # a regular ResNet downsampling block
        "DownBlock2D",
        "AttnDownBlock2D",  # a ResNet downsampling block with spatial self-attention
        "AttnDownBlock2D",
    ),
    up_block_types=(
        "AttnUpBlock2D",
        "AttnUpBlock2D",  # a ResNet upsampling block with spatial self-attention
        "UpBlock2D",
        "UpBlock2D",  # a regular ResNet upsampling block
    ),
)
model.to(device);

4.评估模型在对这些数据做增强去噪时的表现,使用这个信息来更新模型权重,然后重复此步骤

下面这是 PyTorch 中经典的优化迭代循环,在这里一批一批的送入数据然后通过优化器来一步步更新模型参数 - 在这个样例中我们使用学习率为 0.0004 的 AdamW 优化器。
对于每一批的数据,我们要
随机取样几个迭代周期
根据预设为数据加入噪声
把带噪数据送入模型
使用 MSE 作为损失函数来比较目标结果与模型预测结果(在这里是加入噪声的场景)
通过loss.backward ()与optimizer.step ()来更新模型参数
在这个过程中我们记录 Loss 值用来后续的绘图。

NB: 这段代码大概需 10 分钟来运行 - 你也可以跳过以下两块操作直接使用预训练好的模型。供你选择,你可以探索下通过缩小模型层中的通道数会对运行速度有多少提升。

# Set the noise scheduler
noise_scheduler = DDPMScheduler(
    num_train_timesteps=1000, beta_schedule="squaredcos_cap_v2"
)

# Training loop
optimizer = torch.optim.AdamW(model.parameters(), lr=4e-4)

losses = []

for epoch in range(30):
    for step, batch in enumerate(train_dataloader):
        clean_images = batch["images"].to(device)
        # Sample noise to add to the images
        noise = torch.randn(clean_images.shape).to(clean_images.device)
        bs = clean_images.shape[0]

        # Sample a random timestep for each image
        timesteps = torch.randint(
            0, noise_scheduler.num_train_timesteps, (bs,), device=clean_images.device
        ).long()

        # Add noise to the clean images according to the noise magnitude at each timestep
        noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

        # Get the model prediction
        noise_pred = model(noisy_images, timesteps, return_dict=False)[0]

        # Calculate the loss
        loss = F.mse_loss(noise_pred, noise)
        loss.backward(loss)
        losses.append(loss.item())

        # Update the model parameters with the optimizer
        optimizer.step()
        optimizer.zero_grad()

    if (epoch + 1) % 5 == 0:
        loss_last_epoch = sum(losses[-len(train_dataloader) :]) / len(train_dataloader)
        print(f"Epoch:{epoch+1}, loss: {loss_last_epoch}")

在这里插入图片描述

5.获取生成图像,需要管道

  • 方法一: 建立一个管道
from diffusers import DDPMPipeline
image_pipe = DDPMPipeline(unet=model, scheduler=noise_scheduler)
pipeline_output = image_pipe()
pipeline_output.images[0]

在这里插入图片描述

  • 本地保存一个这样的管道
image_pipe.save_pretrained("my_pipeline")
  • 方法二:写一个取样循环

从随机噪声开始,遍历管理器的迭代周期来看从最嘈杂直到最微小的噪声变化,基于模型的预测一步步减少一些噪声

# Random starting point (8 random images):
sample = torch.randn(8, 3, 32, 32).to(device)

for i, t in enumerate(noise_scheduler.timesteps):

    # Get model pred
    with torch.no_grad():
        residual = model(sample, t).sample

    # Update sample with step
    sample = noise_scheduler.step(residual, t, sample).prev_sample

show_images(sample)

noise_scheduler.step () 函数相应做了 sample(取样)时的数学运算。其实有很多取样的方法 - 在下一个单元我们将看到在已有模型的基础上如何换一个不同的取样器来加速图片生成,也会讲到更多从扩散模型中取样的背后原理。
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值