bzoj1723 [ Usaco2009 Feb ] --前缀和(水题)

题目大意:
你难以想象贝茜看到一只妖精在牧场出现时是多么的惊讶.她不是傻瓜,立即猛扑过去,用她那灵活的牛蹄抓住了那只妖精.
    “你可以许一个愿望,傻大个儿!”妖精说.
    “财富,”贝茜用梦游般的声音回答道,  “我要获得财富的机会.”
    妖精从来没有碰到过这么简单的愿望.他在地方划出一大块N×N(1≤N≤200)的方格,每个格子上写上_1,000,000到1,000,000之间的数字.他说:  “在方格上朝一个方向行走,可以是行的方向,列的方向,斜对角的方向,一步只能走一格,所有你踩过的数字的和就是你的财富.”
    贝茜请你来帮忙,找到一行、一列或一条对角线上找一段连续的数字,它们的和最大.由于妖精方格的神奇特性,沿着一个方向走,走到了边际,再一步跨过去可以“绕”到方格的对边出现.一行两端的格子是相邻的,一列两端的格子也是相邻的,甚至相邻两行的分别两端的格子也是相邻的(斜对角方向).
    对于下图左边的方格,所有标记过的数字都在一条对角线上.
  
 
对于这个方格,能踩出来的最大的和是24,踩过的数字在右图中标记出来了
 
思路:

我们可以维护行、列、对角线的前缀和,每次用当前和减去最小和、总和减去最小和更新答案。
由于行、列、对角线互不影响,O(n^2)枚举就可以了。
 
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 201
inline char Nc(){
    static char buf[100000],*p1=buf,*p2=buf;
    if(p1==p2){
        p2=(p1=buf)+fread(buf,1,100000,stdin);
        if(p1==p2)return EOF; 
    }
    return *p1++;
}
inline void Read(int& x){
    char c=Nc(),b=1;
    for(;c<'0'||c>'9';c=Nc())if(c=='-')b=-1;
    for(x=0;c>='0'&&c<='9';x=(x<<3)+(x<<1)+c-48,c=Nc());x*=b;
}
int i,j,k,n,x[N][N],y[N][N],a[N][N],b[N][N],Ans=-1000000,Mix[N],Miy[N],Mia[N],Mib[N],Max[N],May[N],Maa[N],Mab[N];
int main()
{
    Read(n);
    for(i=1;i<=n;i++)
    for(j=1;j<=n;j++){
        Read(k);
        x[i][j]=x[i][j-1]+k;
        y[j][i]=y[j][i-1]+k;
        a[(i-j+n)%n+1][i]=a[(i-j+n)%n+1][i-1]+k;
        b[(i+j)%n+1][i]=b[(i+j)%n+1][i-1]+k;
    }
    for(i=1;i<=n;i++)
    for(j=1;j<=n;j++){
        if(x[i][j]-Mix[i]>Ans)Ans=x[i][j]-Mix[i];
        if(y[i][j]-Miy[i]>Ans)Ans=y[i][j]-Miy[i];
        if(a[i][j]-Mia[i]>Ans)Ans=a[i][j]-Mia[i];
        if(b[i][j]-Mib[i]>Ans)Ans=b[i][j]-Mib[i];
        if(x[i][n]-x[i][j-1]+Max[i]>Ans)Ans=x[i][n]-x[i][j-1]+Max[i];
        if(y[i][n]-y[i][j-1]+May[i]>Ans)Ans=y[i][n]-y[i][j-1]+May[i];
        if(a[i][n]-a[i][j-1]+Maa[i]>Ans)Ans=a[i][n]-a[i][j-1]+Maa[i];
        if(b[i][n]-b[i][j-1]+Mab[i]>Ans)Ans=b[i][n]-b[i][j-1]+Mab[i];
        if(x[i][j]<Mix[i])Mix[i]=x[i][j];
        if(y[i][j]<Miy[i])Miy[i]=y[i][j];
        if(a[i][j]<Mia[i])Mia[i]=a[i][j];
        if(b[i][j]<Mib[i])Mib[i]=b[i][j];
        if(x[i][j]>Max[i])Max[i]=x[i][j];
        if(y[i][j]>May[i])May[i]=y[i][j];
        if(a[i][j]>Maa[i])Maa[i]=a[i][j];
        if(b[i][j]>Mab[i])Mab[i]=b[i][j];
    }
    printf("%d",Ans);
    return 0;
}
bzoj1723

 

题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值