[ FWT ] Codeforces663E Binary Table

对每一列状压。
ai 表示状态 i 的出现次数, bi 表示状态 i 的最小代价。
然后考虑行操作。假设行操作的状态为 S ,那么答案就是

i=02n1ai×biS

直接FWT就好了。

#include<bits/stdc++.h>
using namespace std;
#define N 100010
#define ll long long
ll a[2000001],b[2000001],Ans;
int i,j,k,n,m,p[30],x;
char s[N];
bool f[21][N];
inline void FWT(ll* a,int n,int d){
    for(int i=1;i<n;i<<=1)
    for(int j=0;j<n;j+=(i<<1))
    for(int k=0;k<i;k++){
        ll x=a[j+k],y=a[j+k+i];
        a[j+k]=x+y;a[j+k+i]=x-y;
        if(d==-1){
            a[j+k]/=2;a[j+k+i]/=2;
        }
    }
}
int main(){
    scanf("%d%d",&n,&m);
    for(i=1;i<=n;i++){
        scanf("%s",s);
        for(j=0;j<m;j++)f[i][j+1]=s[j]-'0';
    }
    for(p[0]=i=1;i<=20;i++)p[i]=p[i-1]<<1;
    for(i=1;i<=m;i++){
        x=0;
        for(j=1;j<=n;j++)x+=p[j-1]*f[j][i];
        a[x]++;
    }
    for(i=0;i<p[n];i++){
        for(j=0;j<n;j++)
        if((i&p[j])>0)b[i]++;
        b[i]=min(b[i],n-b[i]);
    }
    FWT(a,p[n],1);FWT(b,p[n],1);
    for(i=0;i<p[n];i++)a[i]*=b[i];
    FWT(a,p[n],-1);
    Ans=1ll*n*m;
    for(i=0;i<p[n];i++)Ans=min(Ans,a[i]);
    cout<<Ans<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值