可以发现,一次操作后只有出队的人的逆序对数会改变。预处理出每个人与其后面的人形成的逆序对数,线段树维护身高最小值就好了。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void Read(int& x){
char c=nc();
for(;c<'0'||c>'9';c=nc());
for(x=0;c>='0'&&c<='9';x=(x<<3)+(x<<1)+c-48,c=nc());
}
#define fi first
#define se second
typedef pair<int,int> abcd;
const int N=500010;
const int INF=1e9;
abcd p[N];
int c[N<<2];
int k,n,m,a[N],h[N];
int b[N],x;
long long Ans;
inline void Modify(int x){
for(;x<=n;x+=x&-x)b[x]++;
}
inline int Query(int x){
int Ans=0;
for(;x;x-=x&-x)Ans+=b[x];
return Ans;
}
void Build(int x,int l,int r){
if(l==r){
Ans+=a[l];
c[x]=(a[l]?h[l]:INF);
return;
}
int Mid=l+r>>1;
Build(x<<1,l,Mid);
Build(x<<1|1,Mid+1,r);
c[x]=min(c[x<<1],c[x<<1|1]);
}
int Find(int x,int l,int r,int L,int y){
if(c[x]>y||r<L)return -1;
if(l==r)return l;
int Mid=l+r>>1;
if(l>=L){
if(c[x<<1|1]<=y)return Find(x<<1|1,Mid+1,r,L,y);
return Find(x<<1,l,Mid,L,y);
}
int t=Find(x<<1|1,Mid+1,r,L,y);
return (t==-1?Find(x<<1,l,Mid,L,y):t);
}
void Update(int x,int l,int r,int y){
if(l==r){
c[x]=INF;
return;
}
int Mid=l+r>>1;
if(y<=Mid)Update(x<<1,l,Mid,y);else Update(x<<1|1,Mid+1,r,y);
c[x]=min(c[x<<1],c[x<<1|1]);
}
int main(){
Read(n);Read(m);
for(int i=1;i<=n;i++)Read(h[i]),p[i].fi=h[i],p[i].se=i;
sort(p+1,p+n+1);
for(int i=1;i<=n;){
int j=i;
for(;j<=n&&p[j].fi==p[i].fi;j++)a[p[j].se]=Query(n-p[j].se+1);
for(;i<j;i++)Modify(n-p[i].se+1);
}
Build(1,1,n);
printf("%lld\n",Ans);
while(m--){
Read(x);
while(1){
int t=Find(1,1,n,x,h[x]);
if(t!=-1){
Ans-=a[t];
Update(1,1,n,t);
}else break;
}
printf("%lld\n",Ans);
}
return 0;
}

本文介绍了一种利用线段树和前缀和技巧解决逆序对更新问题的方法。通过预处理每个人的逆序对数量,并使用线段树维护最小值,可以高效地处理动态数组中元素删除导致的逆序对数变化。
1775

被折叠的 条评论
为什么被折叠?



