#include<bits/stdc++.h>
using namespace std;
const int N=520010;
const int P=1004535809;
int k,n,m;
int c[N],g[N],G[N];
int d[N],r[N];
int M,l;
int inv[N],s[N];
inline int Get(int n){
int Ans=1;
for(int i=2;i<=n;i++)Ans=1ll*Ans*i%P;
return Ans;
}
inline int Pow(int x,int y){
int Ans=1;
for(;y;y>>=1,x=1ll*x*x%P)
if(y&1)Ans=1ll*Ans*x%P;
return Ans;
}
inline void NTT(int* a,int n,int l,int d){
for(int i=0;i<n;i++){
r[i]=(r[i>>1]>>1)|((i&1)<<l-1);
if(r[i]>i)swap(a[r[i]],a[i]);
}
for(int i=1;i<n;i<<=1){
int wn=Pow(3,d==1?(P-1)/(i<<1):P-1-(P-1)/(i<<1));
for(int j=0;j<n;j+=i<<1){
int w=1;
for(int k=0;k<i;k++){
int x=a[j+k],y=1ll*a[j+k+i]*w%P;
a[j+k]=(x+y)%P;a[j+k+i]=(x-y)%P;
w=1ll*w*wn%P;
}
}
}
if(d==-1){
int inv=Pow(n,P-2);
for(int i=0;i<n;i++)a[i]=1ll*a[i]*inv%P;
}
}
void Get_inv(int* b,int n,int l){
if(n==1){
b[0]=Pow(g[0],M-2);
return;
}
Get_inv(b,n>>1,l-1);
memcpy(d,g,n*sizeof(int));
memset(d+n,0,n*sizeof(int));
NTT(d,n<<1,l+1,1);NTT(b,n<<1,l+1,1);
for(int i=0;i<(n<<1);i++)b[i]=1ll*b[i]*(2-1ll*d[i]*b[i]%P)%P;
NTT(b,n<<1,l+1,-1);
memset(b+n,0,n*sizeof(int));
}
int main(){
scanf("%d",&n);
inv[0]=inv[1]=s[0]=s[1]=1;
for(int i=2;i<=n;i++)inv[i]=1ll*inv[P%i]*(P-P/i)%P,s[i]=1ll*s[i-1]*inv[i]%P;
for(int i=1;i<=n;i++)g[i]=1ll*Pow(2,1ll*i*(i-1)/2%(P-1))*s[i]%P,c[i]=1ll*Pow(2,1ll*i*(i-1)/2%(P-1))*s[i-1]%P;
g[0]=1;
for(M=1;M<=n;M<<=1)l++;
Get_inv(G,M,l);
NTT(G,M<<1,l+1,1);NTT(c,M<<1,l+1,1);
for(int i=0;i<(M<<1);i++)G[i]=1ll*G[i]*c[i]%P;
NTT(G,M<<1,l+1,-1);
cout<<(1ll*G[n]*Get(n-1)%P+P)%P<<endl;
return 0;
}
[ NTT 多项式求逆 ] BZOJ3456
最新推荐文章于 2022-05-11 12:55:11 发布