1. An Introduction to Recommender System
1.1 介绍
这一部分主要是文字介绍,个人觉得不是特别重要,可参看wiki。
1.2 推荐系统的目标
推荐系统主要分为两类问题,第一类为Prediction version of problem,即评分预测,给出有评分的user-item作为训练数据,预测没有给出评分的user-item;第二类为Ranking version of problem,不用预测评分,而是直接选出top-k个item给user,因此也称为top-k recommendation problem。
操作系统的目标主要有以下四个:
(1)Relevance,即相关性,推荐的item应该要与用户的喜好相关。
(2)Novelty,新颖性,即用户之前没有见过的东西。
(3)Serendipity,推荐的item能够让用户感到惊喜。
(4)Increasing recommendation diversity,增加推荐的多样性。
后续内容我觉得在读完后续章节以后会理解的更加透彻,因此会在后续补充。
参考资料:
1.Recommender System , charu C. Aggarwal