思路: 矩阵快速幂
分析:
1 题目给定n个数每个数在0~m-1之内,题目规定两个数之间的距离为min(|i-j| , n-|i-j|)。现在给定d和k,表示做k次的变换,每一次变换过后每个数变成了一个新的数。这个新的数等于和它距离小于等于d的所有数的和%m
2 这题和之前做的两道题很像hdu2276 和 FZU1692,都是属于循环同构的问题
那么我们先来看一下每个数在做一次变换过后变成什么。因为要距离小于等于d,第一种|i-j| = d , 则j = i+d , 第二种情况n-|i-j| = d , 因此 j = n-d+i 。
第一个数等于 = num[1]+num[2]+....+num[d+1] + num[n-d+1]+...+num[n]
第二个数等于 = num[2]+....+num[d+2]+num[n-d+2]+...+num[n]
..............................................................................................................
3 因为这里的矩阵是循环同构的,因此我们只要求出第一行,剩下的我们就可以根据前一行推出。这样就把矩阵的乘法的复杂度降到了O(n^2)
代码:
/************************************************
* By: chenguolin *
* Date: 2013-08-31 *
* Address: http://blog.csdn.net/chenguolinblog *
************************************************/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long int64;
const int N = 505;
int n , MOD , d , k;
int arr[N];
struct Matrix{
int64 mat[N][N];
Matrix operator*(const Matrix &m)const{
Matrix tmp;
for(int i = 1 ; i <= n ; i++){
tmp.mat[1][i] = 0;
for(int j = 1 ; j <= n ; j++)
tmp.mat[1][i] += mat[1][j]*m.mat[j][i]%MOD;
tmp.mat[1][i] %= MOD;
}
for(int i = 2 ; i <= n ; i++){
tmp.mat[i][1] = tmp.mat[i-1][n];
for(int j = 2 ; j <= n ; j++)
tmp.mat[i][j] = tmp.mat[i-1][(j-1+n)%n];
}
return tmp;
}
};
void init(Matrix &m){
memset(m.mat , 0 , sizeof(m.mat));
for(int i = 1 ; i <= d+1 ; i++)
m.mat[1][i] = 1;
for(int i = n-d+1 ; i <= n ; i++)
m.mat[1][i] = 1;
for(int i = 2 ; i <= n ; i++){
m.mat[i][1] = m.mat[i-1][n];
for(int j = 2 ; j <= n ; j++)
m.mat[i][j] = m.mat[i-1][(j-1+n)%n];
}
}
void Pow(Matrix &m){
Matrix ans;
memset(ans.mat , 0 , sizeof(ans.mat));
for(int i = 1 ; i <= n ; i++)
ans.mat[i][i] = 1;
while(k){
if(k&1)
ans = ans*m;
k >>= 1;
m = m*m;
}
for(int i = 1 ; i <= n ; i++){
int64 sum = 0;
for(int j = 1 ; j <= n ; j++)
sum += ans.mat[i][j]*arr[j]%MOD;
if(i > 1) printf(" ");
printf("%lld" , sum%MOD);
}
puts("");
}
int main(){
Matrix m;
while(scanf("%d" , &n) != EOF){
scanf("%d%d%d" , &MOD , &d , &k);
for(int i = 1 ; i <= n ; i++)
scanf("%d" , &arr[i]);
init(m);
Pow(m);
}
return 0;
}