卷积神经网络(CNN)基础知识整理
0写在前面
这两天陆续看了一些关于卷积神经网络的视频和博文,把我觉得比较有用的知识和内容梳理一下,理顺逻辑,自己也可加深理解,写在这里,日后想看,随手就能翻来,永不会丢失。
1卷积神经网络
既然叫卷积神经网络,这里面首先是卷积,然后是神经网****络,是2者的一个结合,卷积这个概念实际上来自于信号处理领域,一般是对2个信号进行卷积运算,见下图:


神经网络,这是机器学习的元老,是对人脑神经元工作机制的模拟,每个神经元是一个计算单元,输入的数据与权重进行相乘、求和,再加上偏置,得到的数据再经过激活函数,将结果进行输出,见下图,多个神经元相互连接组成神经网络,具体就不展开说了。


卷积神经网络在图像分类和识别领域的应用非常多,最早用于手写数字的分类识别,后来逐渐发展起来。
2图片格式

本文介绍了卷积神经网络的基础知识,包括卷积运算、神经网络的工作原理、在图像处理中的应用,以及关键组件如卷积核、特征图、步长、padding和池化的作用。还提到了Tensorflow和PyTorch中的shape差异,以及神经网络中的epoch、batch、BatchSize和step概念。最后,讨论了激活函数的重要性。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



