2023/1/15周报

目录

摘要

文献阅读

1、题目和摘要

2、现有方法的问题

3、材料和方法

4、实验过程

5、实验结果

深度学习

1、SVM核技巧

2、软间隔数学思想

3、SVM总结

总结

摘要

本周在论文阅方面,阅读了一篇基于SVM的蔗种坏芽检测识别的论文,SVM方法在分类问题上具有独特的优势,在论文中与LBP算法结合,对蔗种坏芽检测实现高效率检测。在深度学习上,对SVM的核技巧以及软间隔进行了学习。

This week,in terms of thesis reading,a paper on detection and recognition of bad buds of sugarcane seeds based on SVM is read.SVM has unique advantages in classification.In this paper, SVM is combined with LBP algorithm to detect the bad buds of sugarcane seeds with high efficiency.In depth learning,the kernel technique and soft interval of SVM are studied.

文献阅读

1、题目和摘要

题目:基于SVM的蔗种坏芽检测识别

摘要:针对预切种式甘蔗种植需要人工剔除坏芽蔗种的问题,本文基于 SVM 的蔗种坏芽检测识别方法,设计蔗芽识别剔除系统,以“桂糖 44 号”蔗种为实验样本,首先对蔗种图像集以 HSV 颜色空间的 H 分量进行阈值分割、中值滤波及形态学处理,分割蔗种图像,再进行蔗种图像的颜色特征与 LBP 特征提取,建立单特征模型与融合特征模型,最后对样本进行特征训练,获得最佳分割超平面,确定 SVM 分类的决策函数,构建 SVM 分类模型。 模型测试实验结果表明,基于 LBP 与颜色特征融合的 SVM 模型识别准确率达 94. 33%,平均耗时 0. 714s,均优于卷积神经网络识别模型。

2、现有方法的问题

主要通过茎节识别以降低切种伤芽率,但未对蔗种坏芽进行检测识别。现有的研究方法对被测蔗种样品需要良好的光照环境,实验条件较为严苛,难以适应田间作业环境采集蔗种图像光照不均匀、图像模糊失真的蔗芽检测识别。LBP算法在描绘图像局部纹理特征时具有很强鲁棒性,对光照环境的要求较低,且由于蔗种坏芽具有特殊的颜色特征,而 SVM算法训练建模具有小样本统计的最佳预测能力。因此,本文提出一种基于 LBP 与颜色特征融合的 SVM 蔗种坏芽识别算法,以适应蔗种种植作业田间复杂光照环境。

3、材料和方法

选取带坏芽的蔗种 270 个,蔗芽外部轮廓形态完整的蔗种 430 个,共 700 个蔗种样本进行图像采集。

蔗种坏芽主要是由两类组成:机械破损蔗芽和遭受病虫害的烂芽。分别选取4 张典型的样本,并截取图像 样本的蔗芽区域, 与好芽区域进行对比。

遭受病虫害的烂芽区域结构特征呈凹陷状态,蔗芽中心区域为近似圆形的黑色凹槽且边缘区域纹理特征较为粗糙;

机械破损蔗芽区域受空气氧化影响,表面颜色普遍较深,表面纹理特征也表现粗糙;

好芽的结构特征呈凸起状态,其纹理特征相对均匀,颜色较浅。

检查识别流程:

 

4、实验过程

将蔗种图像由 RGB颜色空间转到 HSV 颜色空间可以直观表现颜色的色调、饱和度和亮度,减少光照影响。

实验选取 9×9 的中值滤波模板对蔗种图像进行去噪,并通过形态学闭运算填平小孔,弥合小裂缝以消除噪声,得到蔗种分割图像。

 

基本的 LBP 算子是以 3∗3 的模板逐行扫描图像,以 3∗3 窗口中心像素定为阈值,像素若小于阈值,则记为 0,否则记 1。LBP 是取决于特定区域的中心像素和相邻像素值之间的相对差,光照增强或减弱,图像局部区域的像素值也会随之单调变化,改变光照强度对 LBP 值几乎没有影响,LBP 算法具有良好的鲁棒性。计算公式:

 

本文提取 HSV 颜色空间下的 S 分量特征作为坏芽颜色特征。

在线性可分情况下,实验根据给定蔗种样本数据 { ( x1 ,y1 ) , ( x2 ,y2 ) ,…( xN ,yN ) } ,x 是 D 维实数空间中的向量,x ∈ y∈ { - 1, + 1} ,当 y = + 1 时表示样本 x 是坏芽,当y = - 1 时表示样本 x 是好芽与茎秆。 在样本数据( xi,yi) 中,若 ai= 0,此样本点不是支持向量,对于训练模型没有贡献;若 ai > 0, 此样本点属于支持向量。

 

5、实验结果

提取坏芽区域、好芽与茎秆区域的LBP特征和颜色特征,建立LBP、颜色和LBP +颜色3个特征模型,并进行特征模 型比较。 引入混淆矩阵进行性能评估。

基于 SVM 单一的 LBP 特征或颜色模型,其识别效果都较差,将其融合为 LBP +颜色特征模型,识别效果有所提高,为此本实验选用LBP +颜色特征融合的方式进行蔗种特征提取。

 

基于 LBP+颜色特征的两种分类器测试对比:

 

基于 LBP +颜色融合特征的SVM分类模型较理想,其识别准确率94. 33%、识别平均耗时为0. 714 s。

深度学习

1、SVM核技巧

对于核技巧,其目的是希望通过将输入空间内线性不可分的数据映射到一个高纬的特征空间内使得数据在特征空间内是可分的,我们定义这种映射为ϕ(x)。

核函数的选择包括两部分工作:一是核函数类型的选择,二是确定核函数类型后相关参数的选择.

核函数分类: a、线性核函数。线性核,主要用于线性可分的情况,我们可以看到特征空间到输入空间的维度是一样的,其参数少速度快,对于线性可分数据,其分类效果很理想

b、多项式核函数。多项式核函数可以实现将低维的输入空间映射到高纬的特征空间。

c、高斯核函数。高斯径向基函数是一种局部性强的核函数,其可以将一个样本映射到一个更高维的空间内,该核函数是应用最广的一个。

d、sigmoid核函数。采用sigmoid核函数,支持向量机实现的就是一种多层神经网络。

选取核函数的方法:

1、特征数量和样本数量差不多,选用线性核函数

2、特征数量少,样本数量正常,选用高斯核函数

3、特征数量少,样本数量很大,则需要手动添加一些特征来使用线性核函数。

2、软间隔数学思想

当数据不可线性可分的时候,,采用软间隔SVM去做。软间隔SVM在硬间隔的基础上加入了松弛变量,允许SVM在一些样本上出错,即允许某些样本不满足约束。

软间隔优化问题(带超参数C)

 

 

3、SVM总结

优点:1、可用于线性/非线性分类,也可以用于回归,泛化错误率低,也就是说具有良好的学习能力,且学到的结果具有很好的推广性。 2、可以解决小样本情况下的机器学习问题,可以解决高维问题,可以避免神经网络结构选择和局部极小点问题。 3、SVM是最好的现成的分类器,现成是指不加修改可直接使用。并且能够得到较低的错误率,SVM可以对训练集之外的数据点做很好的分类决策。

缺点:对参数调节和函数的选择敏感、难以训练大规模数据集、需要组合多个二分类SVM来实现多分类。

总结

本周的学习大概结束了SVM理论方面的学习,在实践上还缺少学习,因此在下周将在实践部分展开重点学习。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值