%%========================================================================= %函数名称:cnntrain() %输入参数:net,神经网络;x,训练数据矩阵;y,训练数据的标签矩阵;opts,神经网络的相关训练参数 %输出参数:net,训练完成的卷积神经网络 %算法流程:1)将样本打乱,随机选择进行训练; % 2)取出样本,通过cnnff2()函数计算当前网络权值和网络输入下网络的输出 % 3)通过BP算法计算误差对网络权值的导数 % 4)得到误差对权值的导数后,就通过权值更新方法去更新权值 %注意事项:1)使用BP算法计算梯度 %%========================================================================= function net = cnntrain(net, x, y, opts) m = size(x, 3); %m保存的是训练样本个数 disp(['样本总个数=' num2str(m)]); numbatches = m / opts.batchsize; %numbatches表示每次迭代中所选取的训练样本数 if rem(numbatches, 1) ~= 0 %如果numbatches不是整数,则程序发生错误 error('numbatches not integer'); end %%===================================================================== %主要功能:CNN网络的迭代训练 %实现步骤:1)通过randperm()函数将原来的样本顺序打乱,再挑出一些样本来进行训练 % 2)取出样本,通过cnnff2()函数计算当前网络权值和网络输入下网络的输出 % 3)通过BP算法计算误差对网络权值的导数 % 4)得到误差对权值的导数后,就通过权值更新方法去更新权值 %注意事项:1)P = randperm(N),返回[1, N]之间所有整数的一个随机的序列,相当于把原来的样本排列打乱, % 再挑出一些样本来训练 % 2)采用累积误差的计算方式来评估当前网络性能,即当前误差 = 以前误差 * 0.99 + 本次误差 * 0.01 % 使得网络尽可能收敛到全局最优 %%===================================================================== net.rL = []; %代价函数值,也就是误差值 for i = 1 : opts.numepochs %对于每次迭代 disp(['epoch ' num2str(i) '/' num2str(opts.numepochs)]); tic; %使用tic和toc来统计程序运行时间 %%%%%%%%%%%%%%%%%%%%取出打乱顺序后的batchsize个样本和对应的标签 %%%%%%%%%%%%%%%%%%%% kk = randperm(m); for l = 1 : numbatches batch_x = x(:, :, kk((l - 1) * opts.batchsize + 1 : l * opts.batchsize)); batch_y = y(:, kk((l - 1) * opts.batchsize + 1 : l * opts.batchsize)); %%%%%%%%%%%%%%%%%%%%在当前的网络权值和网络输入下计算网络的输出(特征向量)%%%%%%%%%%%%%%%%%%%% net = cnnff(net, batch_x); %卷积神经网络的前馈运算 %%%%%%%%%%%%%%%%%%%%通过对应的样本标签用bp算法来得到误差对网络权值的导数%%%%%%%%%%%%%%%%%%%% net = cnnbp(net, batch_y); %卷积神经网络的BP算法 %%%%%%%%%%%%%%%%%%%%通过权值更新方法去更新权值%%%%%%%%%%%%%%%%%%%% net = cnnapplygrads(net, opts); if isempty(net.rL) net.rL(1) = net.L; %代价函数值,也就是均方误差值 ,在cnnbp.m中计算初始值 net.L = 1/2* sum(net.e(:) .^ 2) / size(net.e, 2); end net.rL(end + 1) = 0.99 * net.rL(end) + 0.01 * net.L; %采用累积的方式计算累积误差 end toc; end end