题意:矩阵第i行第j列代表c(i,j),给出行和列范围,求那个矩形中的和。
做法:由c(i+1,j+1) = c(i,j)+c(i,j+1)可得,这行是上一行乘2加上上行的第一个前一个,再减去最后一个(写下来就懂)。然后由于要取模,我们必须用到Lucas定理,因为如果不用,直接计算,如果n和m过大,会出现分母分子同时模p都为0的情况,但是其实由于分母和分子可以约分,答案并不为0。
Lucas定理的证明可以百度,写成简单式子就是c(n,m) = c(n/p,m/p)*c(n%p,m%p)。
AC代码:
#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdlib>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<string.h>
#include<string>
#include<sstream>
#include<bitset>
using namespace std;
#define ll __int64
#define ull unsigned long long
#define eps 1e-8
#define NMAX 10000000
#define MOD 1000000007
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1)
#define mp make_pair
ll in[100010],inv[100010],mod;
ll cal(ll a,ll b)
{
ll ans=1;
while(b)
{
if(b&1) ans = ans*a%mod;
a = a*a%mod;
b >>= 1;
}
return ans;
}
void init()
{
in[1] = 1; in[0] = 1;
for(int i = 2; i <= 100000; i++)
{
in[i] = in[i-1]*i%mod;
}
inv[1] = inv[0] = 1;
for(int i = 2;i <= 100000; i++)
{
inv[i] = cal(in[i],mod-2);
}
}
ll C(ll n,ll m)
{
if(m <= n)
{
if(n >= mod || m >= mod) return C(n/mod,m/mod)*C(n%mod,m%mod);
return in[n]*inv[m]%mod*inv[n-m]%mod;
}
return 0;
}
int main()
{
#ifdef GLQ
freopen("input.txt","r",stdin);
// freopen("o.txt","w",stdout);
#endif
int l1,l2,r1,r2;
while(scanf("%d%d%d%d%I64d",&l1,&l2,&r1,&r2,&mod)!=EOF)
{
ll ans = 0;
init();
for(int i = l2; i <= r2; i++)
ans = (ans+C(l1,i))%mod;
ll now = ans;
for(int i = l1+1; i <= r1; i++)
{
ll sum = now;
sum = sum*2%mod;
sum = ((sum+C(i-1,l2-1)-C(i-1,r2))%mod+mod)%mod;
now = sum;
ans = (ans+sum)%mod;
}
printf("%I64d\n",ans);
}
}