莫(bao)队(li)算法

前言

RT,莫队算法的真名应该叫做
一个优雅的暴力(引自Alan_Cty)

举个栗子

JZOJ1902

Description
  作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
  具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
  你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。

Input
  输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。
  接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。
  再接下来M行,每行两个正整数L,R表示一个询问。

Output
  输出文件包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)

Sample Input
6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6

Sample Output
2/5
0/1
1/1
4/15

Data Constraint

Hint
【样例解释】
  询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
  询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
  询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
  注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。

【数据范围】
  30%的数据中 N,M ≤ 5000;
  60%的数据中 N,M ≤ 25000;
 
 100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。


很显然,线段树之类的不能满足题目要求的乱搞。
直接暴力的话时间就是 O(N2)

思考一种更加优(bao)(li)的算法,
假设已知当前询问的答案,能否推向下一个询问?
显然可以。公式什么的自己想
可以通过 O(1) 的时间来维护序列&计算答案。

只不过这样暴力去搞的话时间是 O(2N2) (两个指针)
爆炸*2

所以我们的目标就是让指针移动次数尽量小的情况下,安排好处理询问的顺序。
当然可以直接平面上的曼哈顿距离最小生成树,不过时间是 O(N2) ,这样就失去了莫队的意义。
不过有一种神奇的曼哈顿距离最小生成树,时间是 O(NlogN) 的,十分玄学~~

神奇的分块

当然,如果要用上面的玄学操作,莫队算法就不可能这么普及。
考虑用分块大法。
对于询问 [l,r] ,按l所在的块数为第一关键字,r为第二关键字排序。
这样搞不一定能保证距离最小,但是能在距离相对小的情况下时间也相对小。

Why

因为分块避免了以下的情况:
这里写图片描述
暴力排序的话,要这样走:
这里写图片描述
明显浪费时间。

分块的话,要这样走(灰线为分界线):
这里写图片描述

少走多少不言而喻。
还有,分块最好是分成大小为 N 的一块。
时间复杂度是 O(NN)

code

#include <iostream>
#include <cstdio>
#include <cmath>
#include <string.h>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
using namespace std;

long long a[50001];
long long b[50001];
long long c[50001];
long long d[50001];
long long fk[50001];
long long ans[50001];
long long ans2[50001];
long long num[50001];
long long n,m,i,j,k,sum,l,r;
float sq;

long long gcd(long long x,long long y)
{
    long long r;

    if (x==0)
    return y;

    r=x%y;
    while (r)
    {
        x=y;
        y=r;
        r=x%y;
    }

    return y;
}

void qsort(long long l,long long r)
{
    long long i,j,k,mid,mid2;

    i=l;
    j=r;
    mid=fk[(l+r)/2];
    mid2=c[(l+r)/2];

    while (i<=j)
    {
        while ((fk[i]<mid)||((fk[i]==mid)&&(c[i]<mid2))) i++;
        while ((fk[j]>mid)||((fk[j]==mid)&&(c[j]>mid2))) j--;

        if (i<=j)
        {
            k=fk[i];
            fk[i]=fk[j];
            fk[j]=k;
            k=b[i];
            b[i]=b[j];
            b[j]=k;
            k=c[i];
            c[i]=c[j];
            c[j]=k;
            k=d[i];
            d[i]=d[j];
            d[j]=k;

            i++;
            j--;
        }
    }

    if (l<j)
    qsort(l,j);

    if (i<r)
    qsort(i,r);

    return;
}

int main()
{
    scanf("%d%d",&n,&m);

    sq=sqrt(n);

    fo(i,1,n)
    scanf("%d",&a[i]);

    fo(i,1,m)
    {
        scanf("%d%d",&b[i],&c[i]);
        d[i]=i;
        fk[i]=floor(b[i]/sq);
    }

    qsort(1,m);

    l=b[1];
    r=c[1];
    sum=0;
    fo(i,l,r)
    {
        if (num[a[i]]>1)
        sum-=num[a[i]]*(num[a[i]]-1);
        num[a[i]]++;
        if (num[a[i]]>1)
        sum+=num[a[i]]*(num[a[i]]-1);
    }

    ans[d[1]]=sum/2;
    ans2[d[1]]=r-l+1;
    ans2[d[1]]*=(ans2[d[1]]-1);
    ans2[d[1]]/=2;
    j=gcd(ans[d[1]],ans2[d[1]]);

    ans[d[1]]/=j;
    ans2[d[1]]/=j;

    fo(i,2,m)
    {
        if (l>b[i])
        {
            fd(j,l-1,b[i])
            {
                if (num[a[j]]>1)
                sum-=num[a[j]]*(num[a[j]]-1);
                num[a[j]]++;
                if (num[a[j]]>1)
                sum+=num[a[j]]*(num[a[j]]-1);
            }
            l=b[i];
        }
        if (r<c[i])
        {
            fo(j,r+1,c[i])
            {
                if (num[a[j]]>1)
                sum-=num[a[j]]*(num[a[j]]-1);
                num[a[j]]++;
                if (num[a[j]]>1)
                sum+=num[a[j]]*(num[a[j]]-1);
            }
            r=c[i];
        }

        if (l<b[i])
        {
            fo(j,l,b[i]-1)
            {
                if (num[a[j]]>1)
                sum-=num[a[j]]*(num[a[j]]-1);
                num[a[j]]--;
                if (num[a[j]]>1)
                sum+=num[a[j]]*(num[a[j]]-1);
            }
            l=b[i];
        }
        if (r>c[i])
        {
            fd(j,r,c[i]+1)
            {
                if (num[a[j]]>1)
                sum-=num[a[j]]*(num[a[j]]-1);
                num[a[j]]--;
                if (num[a[j]]>1)
                sum+=num[a[j]]*(num[a[j]]-1);
            }
            r=c[i];
        }

        ans[d[i]]=sum/2;
        ans2[d[i]]=c[i]-b[i]+1;
        ans2[d[i]]*=(ans2[d[i]]-1);
        ans2[d[i]]/=2;

        j=gcd(ans[d[i]],ans2[d[i]]);
        ans[d[i]]/=j;
        ans2[d[i]]/=j;
    }

    fo(i,1,m)
    printf("%d%c%d\n",ans[i],'/',ans2[i]);
}

JZOJ1942

Description
  墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问。墨墨会像你发布如下指令:
  1、 Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔。
  2、 R P Col 把第P支画笔替换为颜色Col。
  为了满足墨墨的要求,你知道你需要干什么了吗?

Input
  第1行两个整数N,M,分别代表初始画笔的数量以及墨墨会做的事情的个数。
  第2行N个整数,分别代表初始画笔排中第i支画笔的颜色。
  第3行到第2+M行,每行分别代表墨墨会做的一件事情,格式见题干部分。
Output
  对于每一个Query的询问,你需要在对应的行中给出一个数字,代表第L支画笔到第R支画笔中共有几种不同颜色的画笔。

Sample Input
6 5
1 2 3 4 5 5
Q 1 4
Q 2 6
R 1 2
Q 1 4
Q 2 6
Sample Output
4
4
3
4

Data Constraint

Hint
【数据规模】
  对于40%数据,只包含第一类操作(无修改操作),且。
  除此之外的20%的数据,N,M≤1000
  对于100%的数据,N≤10000,M≤10000,修改操作不多于1000次,所有的输入数据中出现的所有整数均大于等于1且不超过10^6。

带修莫队

顾名思义,就是带修改功能的莫队算法。
当然肯定是离线的啊~
按照修改次数为第三关键字排序,每次先修改,再更新,如果在当前区间范围内的要修改维护的颜色序列。
其实很简单~~

时间复杂度十分玄学,是O(N^(5/3))。
每块大小最好为N^(2/3)。
证明看各种大牛的博客。

code

#include <iostream>
#include <cstdio>
#include <string.h>
#include <cmath>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
using namespace std;
int n,m,i,j,k,n1,n2,l,r,s,ans;
int a[10001][5];
int b[10001];
int bb[10001];
int cg[10001][3];
int num[1000001];
int anss[10001];
char ch;
double sq;
string sssss;

void qsort(int l,int r)
{
    int i,j,k,mid1,mid2,mid3;

    i=l;
    j=r;
    mid1=a[(l+r)/2][3];
    mid2=a[(l+r)/2][1];
    mid3=a[(l+r)/2][2];

    while (i<=j)
    {
        while ((a[i][3]<mid1)||((a[i][3]==mid1)&&(a[i][1]<mid2))||((a[i][3]==mid1)&&(a[i][1]==mid2)&&(a[i][2]<mid3))) i++;
        while ((a[j][3]>mid1)||((a[j][3]==mid1)&&(a[j][1]>mid2))||((a[j][3]==mid1)&&(a[j][1]==mid2)&&(a[j][2]>mid3))) j--;

        if (i<=j)
        {
            k=a[i][0];
            a[i][0]=a[j][0];
            a[j][0]=k;
            k=a[i][1];
            a[i][1]=a[j][1];
            a[j][1]=k;
            k=a[i][2];
            a[i][2]=a[j][2];
            a[j][2]=k;
            k=a[i][3];
            a[i][3]=a[j][3];
            a[j][3]=k;
            k=a[i][4];
            a[i][4]=a[j][4];
            a[j][4]=k;

            i++;
            j--;
        }
    }

    if (l<j)
    qsort(l,j);

    if (i<r)
    qsort(i,r);

    return;
}

int main()
{
    cin>>n>>m;
    fo(i,1,n)
    {
        cin>>b[i];
        bb[i]=b[i];
    }

    sq=sqrt(n);

    fo(i,1,m)
    {
        cin>>ch>>j>>k;

        if (ch=='Q')
        {
            n1++;
            a[n1][0]=j;
            a[n1][1]=k;
            a[n1][2]=n2;
            a[n1][3]=floor(j/sq);
            a[n1][4]=n1;
        }
        else
        {  
            n2++;
            cg[n2][0]=j;
            cg[n2][1]=k;
            cg[n2][2]=b[j];

            b[j]=k;
        }
    }

    fo(i,1,n)
    b[i]=bb[i];

    qsort(1,n1);

    l=0;
    r=0;
    s=0;
    ans=0;

    fo(i,1,n1)
    {
        if (s<a[i][2])
        {
            fo(j,s+1,a[i][2])
            {
                if ((l<=cg[j][0]) && (cg[j][0]<=r))
                {
                    num[b[cg[j][0]]]--;
                    if (num[cg[j][2]]==0)
                    ans--;//修正--2017年9月20日20点46分

                    num[cg[j][1]]++;
                    if (num[cg[j][1]]==1)
                    ans++;//修正--2017年9月20日20点46分
                }

                b[cg[j][0]]=cg[j][1];
            }

            s=a[i][2];
        }
        else
        if (s>a[i][2])
        {
            fd(j,s,a[i][2]+1)
            {
                if ((l<=cg[j][0]) && (cg[j][0]<=r))
                {
                    num[b[cg[j][0]]]--;
                    if (num[cg[j][1]]==0)
                    ans--;//修正--2017年9月20日20点46分

                    num[cg[j][2]]++;
                    if (num[cg[j][2]]==1)
                    ans++;//修正--2017年9月20日20点46分
                }

                b[cg[j][0]]=cg[j][2];
            }

            s=a[i][2];
        }

        if (l>a[i][0])
        {
            fd(j,l-1,a[i][0])
            {
                num[b[j]]++;
                if (num[b[j]]==1)
                ans++;
            }

            l=a[i][0];
        }
        if (r<a[i][1])
        {
            fo(j,r+1,a[i][1])
            {
                num[b[j]]++;
                if (num[b[j]]==1)
                ans++;
            }

            r=a[i][1];
        }

        if (l<a[i][0])
        {
            fo(j,l,a[i][0]-1)
            {
                num[b[j]]--;
                if (num[b[j]]==0)
                ans--;
            }

            l=a[i][0];
        }
        if (r>a[i][1])
        {
            fd(j,r,a[i][1]+1)
            {
                num[b[j]]--;
                if (num[b[j]]==0)
                ans--;
            }

            r=a[i][1];
        }

        anss[a[i][4]]=ans;
    }

    fo(i,1,n1)
    cout<<anss[i]<<endl;
}

后记

莫队算法是解决离线问题的利器,对于在线问题就gg了。
关于带修莫队的代码有些错误,与2017年9月20日20点46分修正。
因为可能会出现多次修改同一个点同一个值的情况,
在JZOJ4594. 【NOIP2016模拟7.8】Dynamic len上有体现。
(大致和本题相同)

参考资料:
莫队算法
支(zi)持(ci)修改的莫队算法
莫队算法学习小记

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值