jzoj3538. 方阵移动

7 篇文章 0 订阅
6 篇文章 0 订阅

题目描述

Description
操场可以看成一个平面直角坐标系,在操场上有nn个同学。你希望将这nn个同学排成一个间距为1的nn的方阵,并且要求方阵的左边界在y轴上。每个同学在初始格点(xi,yi)上,可以移动到任何一个格点(xi’,yi’),耗费的体力值为(|xi-xi’|+|yi-yi’|)^p,xi,yi是整数,p是正整数。现在你想知道,将这nn同学移动成符合要求的方阵的情况下,总共耗费的体力值最小是多少。

Input
每个测试点包含多组测试数据,第一行一个正整数t,表示有t组测试数据。接下来有t个部分。每个部分第一行两个正整数n,p,含义如上所述,接下来n*n行,每行两个整数,表示每个同学的坐标。

Output
输出t行,每行一个整数,表示这一组测试数据的总共耗费最小体力值。

Sample Input
2

2 1

0 2

2 1

3 1

3 2

2 2

0 0

0 1

1 0

2 2

Sample Output
6

4

【样例说明】

Case #1:

(2,1) -> (0,1) cost 2

(3,1) -> (1,1) cost 2

(3,2) -> (1,2) cost 2

Case #2:

(2,2) - > (1,1) cost 4

Data Constraint
在这里插入图片描述

题解

设f(y)表示方阵左上角为(0,y)的最优解
f(y)可以费用流O(n5)求
通过打表发现f(y)下凸,三分
(三分时为了方便防止特殊情况,可以不要求l==r,转而为l+某个小数==r,最后暴力扫一下)
没了

code

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
#define inf 9223372036854775807ll
#define abs(x) ((x)>0?(x):-(x))
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
using namespace std;

int a[5001][2];
long long A[5001];
int af[5001];
int ls[101];
int x[51];
int y[51];
int X[51];
int Y[51];
int d[100001];
int bz[100001];
long long f[101];
int g[101];
int G[101];
int T,ed,N,n,p,I,i,j,k,l,len,mx,mn,h,t,mid,midd;
long long ans,s;

void New(int x,int y,long long w,int flow)
{
	++len;
	a[len][0]=y;
	a[len][1]=ls[x];
	ls[x]=len;
	A[len]=w;
	af[len]=flow;
}

void NEW(int x,int y,long long w,int flow)
{
	New(x,y,w,flow);
	New(y,x,-w,0);
}

long long F(long long I)
{
	long long ans=0,s;
	int i,j,k,l;
	
	memset(ls,0,sizeof(ls));
	ans=0;
	
	ed=N+N+1;
	len=1;
	
	k=0;
	fo(i,0,n-1)
	{
		fo(j,0,n-1)
		{
			++k;
			
			X[k]=i;
			Y[k]=I-j;
		}
	}
	
	fo(i,1,N)
	{
		fo(j,1,N)
		{
			s=abs(x[i]-X[j])+abs(y[i]-Y[j]);
			if (p==2)
			s=s*s;
			
			NEW(i,j+N,s,1);
		}
	}
	fo(i,1,N)
	{
		NEW(0,i,0,1);
		NEW(i+N,ed,0,1);
	}
	
	while (1)
	{
		memset(f,127,sizeof(f));
		memset(g,0,sizeof(g));
		memset(G,0,sizeof(G));
		
		h=0;
		t=1;
		d[1]=0;
		bz[0]=1;
		f[0]=0;
		
		while (h<t)
		{
			for (i=ls[d[++h]]; i; i=a[i][1])
			if (af[i] && f[a[i][0]]>f[d[h]]+A[i])
			{
				f[a[i][0]]=f[d[h]]+A[i];
				g[a[i][0]]=d[h];
				G[a[i][0]]=i;
				
				if (!bz[a[i][0]] && a[i][0]!=ed)
				{
					bz[a[i][0]]=1;
					d[++t]=a[i][0];
				}
			}
			
			bz[d[h]]=0;
		}
		
		if (f[ed]<=4611686018427387904ll)
		ans+=f[ed];
		else
		break;
		
		i=ed;
		while (i)
		{
			--af[G[i]];
			++af[G[i]^1];
			
			i=g[i];
		}
	}
	
	return ans;
}

int main()
{
//	freopen("a.in","r",stdin);
//	freopen("b.out","w",stdout);
//	freopen("S8_4_1.in","r",stdin);
	
	scanf("%d",&T);
	for (;T;--T)
	{
		mx=-233333333;
		mn=233333333;
		
		scanf("%d%d",&n,&p);
		N=n*n;
		fo(i,1,N)
		{
			scanf("%d%d",&x[i],&y[i]);
			
			mx=max(mx,y[i]+n-1);
			mn=min(mn,y[i]);
		}
		fo(i,1,N)
		y[i]-=mn-1;
		
		mx-=mn-1;
		mn=1;
		
		while (mn+5<mx)
		{
			mid=(mn+mx)/2;
			midd=(mn+mid)/2;
			
			if (F(midd)>F(mid))
			mn=midd;
			else
			mx=mid;
		}
		
		ans=inf;
		fo(I,mn,mx)
		{
			s=F(I);
			ans=min(ans,s);
		}
		
		printf("%lld\n",ans);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值