题目描述
Description
操场可以看成一个平面直角坐标系,在操场上有nn个同学。你希望将这nn个同学排成一个间距为1的nn的方阵,并且要求方阵的左边界在y轴上。每个同学在初始格点(xi,yi)上,可以移动到任何一个格点(xi’,yi’),耗费的体力值为(|xi-xi’|+|yi-yi’|)^p,xi,yi是整数,p是正整数。现在你想知道,将这nn同学移动成符合要求的方阵的情况下,总共耗费的体力值最小是多少。
Input
每个测试点包含多组测试数据,第一行一个正整数t,表示有t组测试数据。接下来有t个部分。每个部分第一行两个正整数n,p,含义如上所述,接下来n*n行,每行两个整数,表示每个同学的坐标。
Output
输出t行,每行一个整数,表示这一组测试数据的总共耗费最小体力值。
Sample Input
2
2 1
0 2
2 1
3 1
3 2
2 2
0 0
0 1
1 0
2 2
Sample Output
6
4
【样例说明】
Case #1:
(2,1) -> (0,1) cost 2
(3,1) -> (1,1) cost 2
(3,2) -> (1,2) cost 2
Case #2:
(2,2) - > (1,1) cost 4
Data Constraint
题解
设f(y)表示方阵左上角为(0,y)的最优解
f(y)可以费用流O(n5)求
通过打表发现f(y)下凸,三分
(三分时为了方便防止特殊情况,可以不要求l==r,转而为l+某个小数==r,最后暴力扫一下)
没了
code
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
#define inf 9223372036854775807ll
#define abs(x) ((x)>0?(x):-(x))
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
using namespace std;
int a[5001][2];
long long A[5001];
int af[5001];
int ls[101];
int x[51];
int y[51];
int X[51];
int Y[51];
int d[100001];
int bz[100001];
long long f[101];
int g[101];
int G[101];
int T,ed,N,n,p,I,i,j,k,l,len,mx,mn,h,t,mid,midd;
long long ans,s;
void New(int x,int y,long long w,int flow)
{
++len;
a[len][0]=y;
a[len][1]=ls[x];
ls[x]=len;
A[len]=w;
af[len]=flow;
}
void NEW(int x,int y,long long w,int flow)
{
New(x,y,w,flow);
New(y,x,-w,0);
}
long long F(long long I)
{
long long ans=0,s;
int i,j,k,l;
memset(ls,0,sizeof(ls));
ans=0;
ed=N+N+1;
len=1;
k=0;
fo(i,0,n-1)
{
fo(j,0,n-1)
{
++k;
X[k]=i;
Y[k]=I-j;
}
}
fo(i,1,N)
{
fo(j,1,N)
{
s=abs(x[i]-X[j])+abs(y[i]-Y[j]);
if (p==2)
s=s*s;
NEW(i,j+N,s,1);
}
}
fo(i,1,N)
{
NEW(0,i,0,1);
NEW(i+N,ed,0,1);
}
while (1)
{
memset(f,127,sizeof(f));
memset(g,0,sizeof(g));
memset(G,0,sizeof(G));
h=0;
t=1;
d[1]=0;
bz[0]=1;
f[0]=0;
while (h<t)
{
for (i=ls[d[++h]]; i; i=a[i][1])
if (af[i] && f[a[i][0]]>f[d[h]]+A[i])
{
f[a[i][0]]=f[d[h]]+A[i];
g[a[i][0]]=d[h];
G[a[i][0]]=i;
if (!bz[a[i][0]] && a[i][0]!=ed)
{
bz[a[i][0]]=1;
d[++t]=a[i][0];
}
}
bz[d[h]]=0;
}
if (f[ed]<=4611686018427387904ll)
ans+=f[ed];
else
break;
i=ed;
while (i)
{
--af[G[i]];
++af[G[i]^1];
i=g[i];
}
}
return ans;
}
int main()
{
// freopen("a.in","r",stdin);
// freopen("b.out","w",stdout);
// freopen("S8_4_1.in","r",stdin);
scanf("%d",&T);
for (;T;--T)
{
mx=-233333333;
mn=233333333;
scanf("%d%d",&n,&p);
N=n*n;
fo(i,1,N)
{
scanf("%d%d",&x[i],&y[i]);
mx=max(mx,y[i]+n-1);
mn=min(mn,y[i]);
}
fo(i,1,N)
y[i]-=mn-1;
mx-=mn-1;
mn=1;
while (mn+5<mx)
{
mid=(mn+mx)/2;
midd=(mn+mid)/2;
if (F(midd)>F(mid))
mn=midd;
else
mx=mid;
}
ans=inf;
fo(I,mn,mx)
{
s=F(I);
ans=min(ans,s);
}
printf("%lld\n",ans);
}
}