机器学习
GnahzNib
技术发烧友!
展开
-
机器学习(一)
1、什么是机器学习? 机器学习 就是把无序的数据转换成有用的信息。 2、特征或者属性通常是训练样本集的列,它们是独立测量得到的结果,多个特征联系在一起共同组成一个训练样本 3、机器学习的主要任务:分类、回归,分类以及回归属于监督学习。 *无监督学习——聚类 4、选择算法: *使用机器学习算法的目的,想要完成何种任务; --预测目标变量的值:监督原创 2016-08-21 17:33:59 · 595 阅读 · 0 评论 -
机器学习(二)k-近邻分类算法(kNN)
1、k-近邻算法概述 k-近邻算法采用测量不同特征值之间的距离的方法进行分类。 优点:精度高、对异常值不敏感、无数据输入假定; 缺点:计算复杂度高、空间复杂度高; 适用数据范围:数值型和标称型。 2、工作原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样原创 2016-08-21 19:43:19 · 1162 阅读 · 0 评论 -
线性回归从公理到算法推导再到代码实现
github查看jupyter格式 觉得帮到您了就在GitHub给个star吧原创 2018-02-24 17:09:04 · 469 阅读 · 0 评论