以下是一个使用Python实现基于迁移学习技术预测土壤有机碳(SOC)的示例代码。在这个示例中,我们将使用Keras构建一个简单的三层神经网络模型,基于2023年采集的150个土样数据建立模型,然后将模型的部分知识迁移到其他年份的数据上进行预测。
步骤概述
- 数据准备:模拟生成2023年和其他年份的土样数据。
- 模型构建:构建一个三层的神经网络模型。
- 模型训练:使用2023年的数据训练模型。
- 迁移学习:冻结模型的部分层,使用其他年份的数据微调模型。
- 预测:使用微调后的模型预测其他年份的SOC含量。
代码实现
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
# 步骤1: 数据准备
# 模拟生成2023年的150个土样数据
np.random.seed(42)
n_samples = 150
n_features = 5 # 假设每个土样有5个特征
X_2023 = np.random.randn(n_samples, n_features)
y_2023 = np.random.randn(n_samples) # 模拟SOC含量
# 模拟生成其他年份的数据
n_samples_other = 100
X_other = np.random.randn(n_samples_other, n_features)
y_other = np.random.randn(n_samples_other)
# 数据标准化
scaler = StandardScaler()
X_2023_scaled = scaler.fit_transform(X_2023)
X_other_scaled = scaler.transform(X_other)
# 划分训练集和测试集
X_train_2023, X_test_2023, y_train_2023, y_test_2023 = train_test_split(X_2023_scaled, y_2023, test_size=0.2, random_state=42)
X_train_other, X_test_other, y_train_other, y_test_other = train_test_split(X_other_scaled, y_other, test_size=0.2, random_state=42)
# 步骤2: 模型构建
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(n_features,)))
model.add(Dense(32, activation='relu'))
model.add(Dense(1))
# 编译模型
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
# 步骤3: 模型训练
model.fit(X_train_2023, y_train_2023, epochs=50, batch_size=16, validation_data=(X_test_2023, y_test_2023))
# 步骤4: 迁移学习
# 冻结模型的前两层
for layer in model.layers[:2]:
layer.trainable = False
# 重新编译模型
model.compile(optimizer=Adam(learning_rate=0.0001), loss='mse')
# 使用其他年份的数据微调模型
model.fit(X_train_other, y_train_other, epochs=20, batch_size=16, validation_data=(X_test_other, y_test_other))
# 步骤5: 预测
y_pred_other = model.predict(X_test_other)
# 打印预测结果
print("预测的SOC含量:", y_pred_other.flatten())
代码解释
- 数据准备:使用
np.random.randn
模拟生成2023年和其他年份的土样数据,然后使用StandardScaler
对数据进行标准化处理。 - 模型构建:使用Keras构建一个三层的神经网络模型,包含两个隐藏层和一个输出层。
- 模型训练:使用2023年的数据训练模型,训练50个epoch。
- 迁移学习:冻结模型的前两层,然后使用其他年份的数据微调模型,训练20个epoch。
- 预测:使用微调后的模型预测其他年份的SOC含量。
注意事项
- 这只是一个示例代码,实际应用中需要使用真实的土样数据。
- 可以根据实际情况调整模型的结构和超参数,以提高预测性能。
- 迁移学习的效果可能受到数据的相似性和模型的复杂度等因素的影响。