
机器学习
文章平均质量分 71
神经网络15044
近十五年的开发经验,喜欢分享知识。
展开
-
MATLAB脚本实现了一个转子系统的参数扫描和分岔分析
该脚本适用于转子动力学研究,特别是临界转速和非线性振动行为的分析。原创 2025-04-18 20:43:23 · 799 阅读 · 0 评论 -
MATLAB代码实现了一个复杂的水声传播模型,主要用于计算和分析声波在海水中的反射损失(Reflection Loss, RL),特别关注了气泡层对声波传播的影响
这段MATLAB代码实现了一个复杂的水声传播模型,主要用于计算和分析声波在海水中的反射损失(Reflection Loss, RL),特别关注了气泡层对声波传播的影响。如果需要进一步优化或扩展功能(如添加实验数据对比),可以调整参数或修改模型细节。原创 2025-04-17 21:07:26 · 484 阅读 · 0 评论 -
MATLAB代码(`Untitled(1).m`)的主要功能是**为ROMS(Regional Ocean Modeling System)模型创建大气强迫数据的NetCDF文件
,包含ROMS模型所需的大气驱动变量(如风场、气温、气压、降水、辐射等),并将这些变量插值到目标网格(ROMS网格或自定义网格)上。文件将作为ROMS模型的边界条件或表面强迫输入,驱动海洋模拟。如果需要进一步扩展(如实际数据插值),需结合外部数据源和插值算法(如。代码通过用户配置生成一个NetCDF格式的强迫文件(这段MATLAB代码(原创 2025-04-17 21:05:31 · 587 阅读 · 0 评论 -
MATLAB代码主要实现了对无人机最优三维位置的迭代求解,并计算地面用户的速率,同时通过一维搜索算法(黄金分割法)对无人机位置进行优化以获取最大可达速率
这段MATLAB代码主要实现了对无人机最优三维位置的迭代求解,并计算地面用户的速率,同时通过一维搜索算法(黄金分割法)对无人机位置进行优化以获取最大可达速率。原创 2025-04-11 21:40:25 · 290 阅读 · 0 评论 -
使用`sklearn`中的逻辑回归模型进行股票的情感分析,以及按日期统计积极和消极评论数量的功能
以下是完成上述任务的Python代码,可在Jupyter Notebook中运行。此代码包含了使用sklearn中的逻辑回归模型进行情感分析,以及按日期统计积极和消极评论数量的功能。原创 2025-04-06 22:32:13 · 584 阅读 · 0 评论 -
基于FAN网络的图像识别系统设计与实现
本系统旨在利用FAN(Fourier Analysis Networks)网络架构实现高效的图像识别功能,并通过Python语言设计一个直观的用户界面,方便用户操作与使用。FAN网络在处理周期性特征方面具有独特优势,有望提升图像识别在复杂场景下的性能。原创 2025-04-05 21:08:46 · 565 阅读 · 0 评论 -
OpenCV 应用介绍
OpenCV是一个广泛用于计算机视觉任务的开源库,在医疗影像分析中的病灶识别与定位方面有重要应用,以下是其相关介绍:原创 2025-03-28 23:46:25 · 366 阅读 · 0 评论 -
非完整移动多机器人系统的事件触发编队控制方法研究
定义:非完整移动机器人系统是指机器人的运动受到非完整约束的系统,即机器人的运动不能在所有方向上自由进行,例如常见的轮式移动机器人,由于车轮的滚动约束,其在某些方向上的运动受到限制。特点:具有运动学和动力学模型复杂、存在非完整约束导致运动规划困难、对环境感知和适应能力要求高等特点。原创 2025-03-25 20:43:54 · 577 阅读 · 0 评论 -
情绪分析和深度强化学习确实能够在一定程度上增强股市预测
在实际应用中,情绪分析和深度强化学习可以相互结合。例如,将情绪分析得到的结果作为深度强化学习模型的一个输入特征,让模型在做出决策时同时考虑市场情绪因素。有研究通过结合情绪分析和基于卷积神经网络的Q - learning算法,建立了股票投资预测方法,在对中国股市的实证研究中取得了较好的结果,帮助投资者在新上市股票上获得了较高的回报。原创 2025-03-24 22:14:32 · 450 阅读 · 0 评论 -
使用元学习进行 span detection(少样本命名实体识别)的 Python 示例代码,包含数据集封装、使用现有模型测试以及对比测试
以下是一个使用元学习进行 span detection(少样本命名实体识别)的 Python 示例代码,包含数据集封装、使用现有模型测试以及对比测试。这里我们使用库中的预训练模型,以简单的 Few-Shot 学习方式进行演示。原创 2025-03-22 08:47:23 · 304 阅读 · 0 评论 -
基于 TRIZ 理论的筏式养殖吊笼清洗装备设计研究
例如,增加超声波场,利用超声波的空化效应辅助清洗。例如,采用多关节机械臂连接清洗刷头,通过传感器感知吊笼的轮廓,控制机械臂运动,实现对不同部位的精准清洗,提高清洗效率的同时减少不必要的能耗。通过调整清洗剂的成分和浓度,增强对污垢和附着生物的溶解和剥离能力,降低清洗所需的水压,从而在保证清洗效果的前提下,减少设备功率需求,降低能耗。构建初始物 - 场模型:分析清洗过程中的物质和场,确定清洗设备(刷子、高压水枪等)为作用物(S1),吊笼及污垢为被作用物(S2),清洗力(机械力、水流冲击力等)为场(F)。原创 2025-03-21 18:41:24 · 591 阅读 · 0 评论 -
通过MATLAB和Carsim进行联合仿真,利用强化学习实现自动驾驶人机控制权策略的详细步骤和示例代码
Carsim配置:对Carsim进行必要的设置,包括车辆模型、道路场景等,并生成S - function接口。MATLAB环境搭建:在MATLAB中配置Carsim的S - function,并创建强化学习环境。定义强化学习问题:确定状态空间、动作空间、奖励函数等。训练强化学习智能体:使用MATLAB的强化学习工具箱训练智能体。联合仿真:将训练好的智能体与Carsim进行联合仿真。假设状态包括车辆的速度、位置、驾驶员干预信号等。% 定义状态空间% 车辆速度% 车辆位置% 驾驶员干预信号。原创 2025-03-17 21:05:30 · 320 阅读 · 0 评论 -
生成雷达辐射源信号,包括常规单脉冲信号、线性调频信号、二相码信号、四相码信号、频率编码信号的实现形式
通过以上步骤,我们实现了不同调制方式的雷达辐射源信号的生成,并使用 ShuffleNet 网络算法对这些信号进行了识别。需要注意的是,上述代码中的信号生成函数(如等)需要根据前面的信号生成代码进行实现。同时,实际应用中可能需要对代码进行进一步的优化和调整。原创 2025-03-11 22:17:30 · 1152 阅读 · 0 评论 -
简单的 Python 示例,用于生成电影解说视频的第一人称独白解说文案
以下是一个简单的 Python 示例,用于生成电影解说视频的第一人称独白解说文案。这个示例使用了 OpenAI 的 GPT 模型,因为它在自然语言生成方面表现出色。原创 2025-03-09 13:18:53 · 752 阅读 · 0 评论 -
基于X线影像的深度学习模型预测骨密度的研究进展
DXA通过发射两种不同能量的X线穿透人体,根据不同能量X线被骨骼和软组织吸收的差异,计算出BMD值。其测量部位主要包括腰椎、股骨近端等,具有较高的准确性和重复性,是目前临床诊断OP的金标准。然而,DXA也存在一些缺点,如对骨赘、血管钙化等干扰因素敏感,会导致BMD测量值假性升高;二维成像方式无法区分皮质骨和松质骨,不能准确反映骨骼内部结构;设备价格昂贵,维护成本高,限制了其在基层医院的推广。综上所述,基于X线影像的深度学习模型在骨密度预测方面展现出巨大潜力,为骨质疏松症的早期筛查和诊断提供了新的有效手段。原创 2025-03-06 13:26:54 · 915 阅读 · 0 评论 -
使用 PyTorch 训练光学神经网络来预测网络物理量的示例代码
数据准备:生成或加载用于训练和测试的数据集。模型定义:定义一个简单的全连接神经网络模型。损失函数和优化器:选择合适的损失函数(如均方误差损失)和 Adam 优化器。训练模型:使用训练数据对模型进行训练。评估模型:使用测试数据评估模型的性能。原创 2025-03-05 21:35:33 · 441 阅读 · 0 评论 -
使用LSTM(长短期记忆网络)模型和TensorFlow框架进行自然语言处理的示例
以下是一个使用LSTM(长短期记忆网络)模型和TensorFlow框架进行自然语言处理的示例,具体任务是对电影评论进行情感分析(积极或消极),使用的数据集是IMDB电影评论数据集。原创 2025-03-04 18:20:17 · 633 阅读 · 0 评论 -
实现了一个自适应的NOC路由机制,包括构建流量图、设计拥塞预测模型、优化路由策略和评估性能
通过以上步骤,我们实现了一个自适应的NOC路由机制,包括构建流量图、设计拥塞预测模型、优化路由策略和评估性能。在实际应用中,可以进一步优化神经网络模型和路由算法,以提高NOC系统的性能。原创 2025-02-27 21:55:06 · 599 阅读 · 0 评论 -
使用MATLAB结合EasySpin进行ESR模拟的详细步骤及示例代码
安装EasySpin:确保你已经安装了EasySpin工具箱,它可以帮助你进行ESR模拟。你可以从EasySpin的官方网站(https://easyspin.org/)下载并安装。准备实验数据:将实验得到的EPR数据整理成合适的格式,一般包含磁场(Magnetic Field)和信号强度(Intensity)两列。进行模拟:使用EasySpin的函数对单线态氧自由基和超氧自由基进行模拟。调整参数:通过调整模拟参数,使模拟得到的峰型和峰位置与实验数据尽可能匹配。导出数据。原创 2025-02-27 21:39:59 · 1164 阅读 · 0 评论 -
本地部署 GitHub 上的 Python 人脸识别项目
首先,在本地打开命令行终端(如 Windows 的命令提示符或 Linux 的终端),进入你想要存放项目代码的目录,然后使用。文件,你可能需要查看项目的 README 文件,按照其中的说明手动安装所需的库,常见的人脸识别相关库有。在命令行中进入项目目录,运行相应的命令启动项目。一般来说,项目的 README 文件会说明如何运行项目。常见的运行命令可能是。文件(如果有),里面列出了项目运行所需的依赖包。以下是一个简单的示例代码,假设项目的主文件是。进入克隆下来的项目目录,查看项目的。比如某个项目仓库地址是。原创 2025-02-26 21:59:29 · 871 阅读 · 0 评论 -
使用 `gnpy` 进行全网光传输质量预测并生成光数据的示例代码
gnpy是一个用于光网络规划和优化的开源 Python 库,可用于全网光传输质量预测并生成光数据。以下是使用gnpy。原创 2025-02-26 21:54:14 · 613 阅读 · 0 评论 -
基于Matlab实现汽车远近光灯识别的详细步骤及代码示例
以下是一个基于Matlab实现汽车远近光灯识别的详细步骤及代码示例,主要通过图像处理技术来区分远光灯和近光灯。原创 2025-02-25 23:06:21 · 854 阅读 · 0 评论 -
复现一篇关于图像处理和计算机视觉中目标检测模型算法论文的详细步骤及示例代码
以下是复现一篇关于图像处理和计算机视觉中目标检测模型算法论文的详细步骤及示例代码。我们以经典的 YOLOv5 目标检测算法为例,因为 YOLOv5 是一个非常流行且易于复现的目标检测模型,同时有丰富的开源代码和文档支持。原创 2025-02-23 13:47:54 · 512 阅读 · 0 评论 -
python主要功能是读取原始数据集,将其分割为训练集和测试集,并提供方法来获取训练集、测试集和计算数据集的输入特征和输出标签,方便后续的机器学习模型训练和评估
Dataload该类的主要功能是读取原始数据集,将其分割为训练集和测试集,并提供方法来获取训练集、测试集和计算数据集的输入特征和输出标签,方便后续的机器学习模型训练和评估。原创 2025-02-08 12:20:38 · 402 阅读 · 0 评论 -
基于Python实现的完整解决方案,用于对包含四个类别的1500张图像数据集进行分割、训练模型,并提供简易前端和可视化结果
数据准备:加载和预处理数据集,将其划分为训练集、验证集和测试集。模型构建:构建一个简单的CNN模型。模型训练:使用训练集对模型进行训练。模型评估:使用测试集评估模型,计算F1分数、准确率、混淆矩阵和PR曲线。前端开发:使用Streamlit创建简易前端,展示训练结果和可视化图表。原创 2025-02-07 21:29:08 · 367 阅读 · 1 评论 -
python 实现了一个完整的证据随机森林分类器,包括模型的初始化、训练、预测和评分等功能
这段代码定义了一个名为ERF的类,它继承自sklearn库中的和,实现了一个证据随机森林(Evidential Random Forest, ERF)分类器。原创 2025-02-05 18:50:54 · 702 阅读 · 0 评论 -
复现论文“去模糊算法”
数据准备:读取模糊图像和 IMU 数据。模糊核估计:根据 IMU 数据估计模糊核。图像去模糊:使用估计的模糊核进行图像去模糊。原创 2025-02-04 13:09:28 · 819 阅读 · 0 评论 -
使用WGAN(Wasserstein Generative Adversarial Network)网络对天然和爆破的地震波形图进行分类
本项目旨在使用WGAN(Wasserstein Generative Adversarial Network)网络对天然和爆破的地震波形图进行分类。WGAN是一种生成对抗网络的变体,它通过引入Wasserstein距离来改善传统GAN训练不稳定的问题。我们将利用地震波形图数据训练WGAN的判别器,使其能够准确区分天然地震和爆破地震的波形。原创 2025-02-01 11:31:38 · 784 阅读 · 0 评论 -
在本地部署DSR1模型的技术方案和步骤指南
在本地部署DSR1模型,支持10人同时使用,具备团队知识库和个人知识库功能,同时能够连接网页、邮箱、Slack等聊天工具,类似于AI Agent。原创 2025-01-31 09:32:02 · 1588 阅读 · 0 评论 -
Python实现复原毫米波雷达呼吸波形的示例
数据准备:生成或加载毫米波雷达的呼吸波形数据。定义VAE模型:包括编码器和解码器。定义损失函数:结合重建损失和KL损失。训练模型:使用数据训练VAE模型。波形复原:使用训练好的模型复原呼吸波形。原创 2025-01-30 08:55:32 · 656 阅读 · 0 评论 -
python实现一个完整的智能教室能耗监测与管理系统的实现方案
以下是一个完整的智能教室能耗监测与管理系统的实现方案,主要使用Python语言,涵盖深度学习模型研发、教室场景适应性分析、系统架构设计、前端展示、后端服务以及测试评估等方面。原创 2025-01-29 09:56:39 · 1011 阅读 · 0 评论 -
YOLOv10 介绍
这些案例展示了 YOLOv10 在不同领域的实际应用,通过结合具体的业务需求和场景,可以充分发挥其高效、准确的目标检测能力。在实际项目中,还可以根据需要对模型进行进一步的优化和调整,以提高性能和适应性。请注意,这只是一个非常简单的示例,实际应用中可以根据需要进行更多的处理,如可视化检测结果、处理视频流、调整模型参数等。传统的人工检测方法效率低、准确性不高,需要一种自动化的检测方法来提高生产效率和质量。传统的监测方法往往需要大量的人力和时间,而且难以覆盖大面积的区域。原创 2025-01-28 08:50:36 · 1211 阅读 · 0 评论 -
MATLAB 工具库的使用说明和案例示例
例如,要安装某个工具库,可能需要在 MATLAB 中打开“附加功能”菜单,选择“获取附加功能”,然后按照提示进行安装。或者,对于一些开源的工具库,可能需要按照其提供的安装步骤进行操作。如果你对特定的工具库或应用场景有更详细的需求,可以进一步查阅相关的文档和教程。同时,MATLAB 官方文档提供了丰富的信息和示例,是深入学习各个工具库的重要资源。此外,如果你需要使用某个特定的工具库,还需要确保已经正确安装了该工具库。要获取更多详细的工具库使用说明和案例,可以访问 MATLAB 官方网站或相关的在线学习平台。原创 2025-01-25 23:19:25 · 1292 阅读 · 0 评论 -
MATLAB代码主要用于对肌电(EMG)数据进行处理和分析,包括数据加载、预处理、特征提取、频率分析以及与最大自主收缩(MVC)数据的比较,并将分析结果进行可视化展示
这段MATLAB代码主要用于对肌电(EMG)数据进行处理和分析,包括数据加载、预处理、特征提取、频率分析以及与最大自主收缩(MVC)数据的比较,并将分析结果进行可视化展示。原创 2025-01-24 21:58:43 · 371 阅读 · 0 评论 -
函数实现了从输入的 DEM 文件和 shapefile 文件中读取数据,对 DEM 数据进行基于 shapefile 多边形的裁剪,计算裁剪后图像的二维和三维分形维数
总结来说,该函数实现了从输入的 DEM 文件和 shapefile 文件中读取数据,对 DEM 数据进行基于 shapefile 多边形的裁剪,计算裁剪后图像的二维和三维分形维数,并将结果以图像和文本形式显示的功能。原创 2025-01-16 20:21:48 · 256 阅读 · 0 评论 -
神经网络作为一种强大的人工智能技术
神经网络是一种模拟人类大脑神经元结构和功能的计算模型,它由大量的节点(神经元)和连接这些节点的边组成,通过学习数据中的模式和关系来执行各种任务,如分类、回归、预测、图像识别、自然语言处理等。神经网络在人工智能领域取得了巨大的成功,广泛应用于众多领域,推动了技术的快速发展。原创 2025-01-13 22:34:29 · 945 阅读 · 0 评论 -
python 代码实现了一个高级的 Coppersmith 攻击,用于破解特定条件下的 RSA 加密
类:实现了 Coppersmith 攻击的主要逻辑,包括多项式格基构造、格基约简、小根提取和攻击主方法。函数:生成具有特定攻击特征的 RSA 参数,包括模数n、公钥指数e、密文c和明文m。main函数:演示了如何使用类对不同位长的 RSA 进行攻击,并输出攻击结果。原创 2025-01-12 22:41:16 · 1067 阅读 · 0 评论 -
python 代码实现了使用线性规划(LP)和Benders分解算法进行线性分类的功能
总的来说,这段代码展示了两种不同的方法来求解线性分类问题,并通过可视化来直观地展示分类结果。线性规划方法直接求解整个问题,而Benders分解算法则通过迭代的方式逐步改进解,以达到收敛。这段代码实现了使用线性规划(LP)和Benders分解算法进行线性分类的功能,并对分类结果进行可视化展示。原创 2025-01-11 21:37:31 · 562 阅读 · 0 评论 -
Python代码使用了 `ipkiss3` 和 `picazzo3` 库来设计和模拟一个环形谐振器滤波器电路
导入必要的库:从导入,从si_fab.all导入pdk,从导入i3,从导入,从导入,从导入,从导入,以及导入numpy和。定义类:这是一个继承自i3.Circuit的自定义电路类,用于定义环形谐振器滤波器的参数、实例、布局和连接。定义plotfigure函数:用于绘制电路的传输谱,并标注出谐振点。主程序部分:创建实例,生成布局并可视化,创建电路模型,计算不同波长下的散射矩阵,并可视化散射矩阵。原创 2025-01-10 20:00:24 · 677 阅读 · 0 评论 -
python 代码实现了一个条件生成对抗网络(CGAN),用于生成具有特定理化值的光谱数据
_init__方法:初始化CGAN类,设置生成器、判别器、噪声维度、条件维度和波长等参数。同时,编译判别器和CGAN模型,设置它们的优化器和损失函数。train方法:训练CGAN模型。在每个训练轮次中,从训练数据中随机抽取一批真实光谱数据和对应的理化值,生成一批虚假光谱数据,然后分别训练判别器和生成器。判别器的目标是区分真实和虚假数据,生成器的目标是欺骗判别器。方法:对生成的光谱数据添加高斯噪声,以增加数据的多样性。方法:在训练过程中,定期生成并绘制一个虚假光谱数据,并将其保存为图像文件。原创 2025-01-10 19:58:27 · 384 阅读 · 0 评论