
机器学习
文章平均质量分 73
神经网络15044
近十五年的开发经验,喜欢分享知识。
展开
-
时空网络动力学图谱分析完整解决方案
本文提出了一套完整的时空网络动力学图谱分析解决方案。该方案包含6个核心组件:1)数据预处理与特征提取模块,采用Hjorth参数和香农熵进行特征处理;2)动态连接矩阵计算模块,支持PLV/wPLI等多种连接性分析方法;3)Granger因果分析模块;4)双热图可视化模块;5)极坐标相位关系可视化模块;6)基于1D-CNN的状态分类与显著图生成模块。整套方案采用Python实现,整合了MNE、statsmodels和TensorFlow等工具库,能够全面分析脑电信号的时空动态特性,并提供直观的可视化展示。原创 2025-06-09 17:13:24 · 536 阅读 · 0 评论 -
金融预测模型开发:数据预处理、机器学习预测与交易策略优化
本文将详细介绍一个完整的金融预测模型开发流程,包含数据预处理、机器学习预测和交易策略优化三个核心模块。我们使用Python实现一个端到端的解决方案,适用于股票价格预测和量化交易策略开发。原创 2025-06-07 08:15:36 · 199 阅读 · 0 评论 -
惠斯通电桥温度补偿优化解决方案
惠斯通电桥是一种精密测量电路,常用于传感器和精密仪器中。本问题要求在三个温度点(低温、常温、高温)下,通过在一个电阻上串联固定电阻(Rs)和在另一个电阻上并联固定电阻(Rp),使电桥输出电压保持恒定。目标是通过优化算法找到最优的Rs和Rp值。原创 2025-06-06 17:32:35 · 918 阅读 · 0 评论 -
基于频分复用导频的MMSE信道估计方法设计与仿真
摘要 本文研究了基于频分复用(FDM)导频的MMSE信道估计方法,构建了完整的OFDM系统仿真平台。通过理论分析和Python实现,验证了该方法在不同信噪比、导频密度和移动速度条件下的性能表现。仿真结果表明,FDM导频结构与MMSE估计相结合,可以有效平衡频谱效率和信道估计精度,同时具备良好的抗多径和多普勒效应能力。本文详细推导了MMSE估计器的数学模型,并给出了具体的Python实现方案,包括OFDM符号生成、信道建模、导频处理和性能评估等关键模块。研究成果为实际OFDM系统的信道估计设计提供了理论依据和原创 2025-05-30 21:30:45 · 935 阅读 · 0 评论 -
基于粒子滤波的PSK信号解调实现
本文提出了一种基于粒子滤波的PSK信号解调方法,在非高斯噪声和动态相位偏移环境下实现稳定解调。文章首先建立了PSK信号的状态空间模型,包含相位噪声和频率偏移;然后详细阐述了粒子滤波的核心算法流程,包括预测、权重更新和重采样步骤;最后提供了完整的Python实现代码,包含信号生成、粒子滤波类设计和性能评估。实验结果表明,该方法在20dB信噪比条件下对QPSK信号可实现准确解调,相位跟踪误差小于0.1弧度。相比传统锁相环,粒子滤波具有更强的非线性和非高斯噪声适应能力。原创 2025-05-30 21:28:24 · 370 阅读 · 0 评论 -
音视频融合中的语音分离技术实现
本文提出了一种基于深度学习的音视频融合语音分离方案。系统通过3D CNN提取视频中的嘴唇运动特征,2D CNN处理音频的梅尔频谱,并设计特征融合模块将视觉与听觉信息结合。采用U-Net结构实现语音分离,包含详细的预处理流程、模型架构和训练方法。关键技术包括音视频特征同步、多模态特征融合和语音掩码生成,最终实现从混合音频中分离目标语音的功能。方案提供完整的PyTorch实现代码,涵盖数据预处理、模型构建和训练流程等关键技术环节。原创 2025-05-29 06:52:55 · 1063 阅读 · 0 评论 -
基于MATLAB编程针对NCV检测数据去漂移任务的完整解决方案
本文提出了一套完整的NCV信号尾部漂移处理方案。通过MATLAB实现,首先筛选10个尾部漂移样本并进行频谱分析,确定漂移主频段(0-2Hz)。随后设计100阶FIR高通滤波器(截止频率2Hz),采用零相位滤波技术处理信号。实验结果显示,处理后尾部偏移平均降低91.2%,低频能量衰减>40dB,同时有效信号成分保留率达98%以上。该方案显著提升了NCV信号质量,为后续分析提供了可靠数据基础。原创 2025-05-25 23:25:35 · 1047 阅读 · 0 评论 -
基于Python Anaconda环境,使用CNN-LSTM模型预测碳交易价格的完整技术方案
本文提出了一种基于Python Anaconda环境的CNN-LSTM混合模型,用于碳交易价格预测。方案采用EU ETS历史数据,通过数据预处理(缺失值填充、归一化)、CNN-LSTM模型构建(CNN提取空间特征、LSTM捕获时间依赖)和训练优化(早停机制)等步骤,实现了对碳价波动的有效预测。实验结果表明,该模型能较好地处理碳价数据的非线性和时序特征,为市场参与者提供决策支持。完整技术方案包含数据处理、模型构建、训练优化和结果分析等环节,代码与说明超过6000字。原创 2025-05-25 23:04:28 · 486 阅读 · 0 评论 -
基于PyTorch的残差网络图像分类实现指南
本文介绍了在Python环境下使用PyTorch框架实现ResNet进行图像分类的完整方案,包含理论原理、工程实践和部署细节。主要内容包括:1)ResNet理论基础,分析残差学习原理和网络退化问题;2)服务器环境配置,涵盖硬件要求、软件安装和分布式训练设置;3)图像数据处理流程,含数据增强策略和高效加载方法;4)ResNet模型实现细节,提供基础残差块和瓶颈块的代码实现。该方案适用于生产环境部署,通过跳跃连接解决深度网络优化难题,可用于大规模图像分类任务。原创 2025-05-25 22:52:28 · 874 阅读 · 0 评论 -
基于DQN的学习资源难度匹配智能体
本文介绍了一个基于深度Q网络(DQN)的智能体,用于根据用户的学习表现动态匹配适合难度的学习资源。系统通过模拟学习环境,定义用户状态(当前难度级别和最近答题正确率),并根据用户表现调整资源难度。DQN模型通过三层全连接网络实现,结合经验回放缓冲区提高训练稳定性。智能体通过探索与利用策略选择动作,并定期更新目标网络以优化学习效果。该系统可应用于在线教育平台,自动调整推荐资源的难度,提升学习效率。原创 2025-05-23 19:33:19 · 444 阅读 · 0 评论 -
MATLAB脚本实现了一个转子系统的参数扫描和分岔分析
该脚本适用于转子动力学研究,特别是临界转速和非线性振动行为的分析。原创 2025-04-18 20:43:23 · 839 阅读 · 0 评论 -
MATLAB代码实现了一个复杂的水声传播模型,主要用于计算和分析声波在海水中的反射损失(Reflection Loss, RL),特别关注了气泡层对声波传播的影响
这段MATLAB代码实现了一个复杂的水声传播模型,主要用于计算和分析声波在海水中的反射损失(Reflection Loss, RL),特别关注了气泡层对声波传播的影响。如果需要进一步优化或扩展功能(如添加实验数据对比),可以调整参数或修改模型细节。原创 2025-04-17 21:07:26 · 520 阅读 · 0 评论 -
MATLAB代码(`Untitled(1).m`)的主要功能是**为ROMS(Regional Ocean Modeling System)模型创建大气强迫数据的NetCDF文件
,包含ROMS模型所需的大气驱动变量(如风场、气温、气压、降水、辐射等),并将这些变量插值到目标网格(ROMS网格或自定义网格)上。文件将作为ROMS模型的边界条件或表面强迫输入,驱动海洋模拟。如果需要进一步扩展(如实际数据插值),需结合外部数据源和插值算法(如。代码通过用户配置生成一个NetCDF格式的强迫文件(这段MATLAB代码(原创 2025-04-17 21:05:31 · 604 阅读 · 0 评论 -
MATLAB代码主要实现了对无人机最优三维位置的迭代求解,并计算地面用户的速率,同时通过一维搜索算法(黄金分割法)对无人机位置进行优化以获取最大可达速率
这段MATLAB代码主要实现了对无人机最优三维位置的迭代求解,并计算地面用户的速率,同时通过一维搜索算法(黄金分割法)对无人机位置进行优化以获取最大可达速率。原创 2025-04-11 21:40:25 · 307 阅读 · 0 评论 -
使用`sklearn`中的逻辑回归模型进行股票的情感分析,以及按日期统计积极和消极评论数量的功能
以下是完成上述任务的Python代码,可在Jupyter Notebook中运行。此代码包含了使用sklearn中的逻辑回归模型进行情感分析,以及按日期统计积极和消极评论数量的功能。原创 2025-04-06 22:32:13 · 600 阅读 · 0 评论 -
基于FAN网络的图像识别系统设计与实现
本系统旨在利用FAN(Fourier Analysis Networks)网络架构实现高效的图像识别功能,并通过Python语言设计一个直观的用户界面,方便用户操作与使用。FAN网络在处理周期性特征方面具有独特优势,有望提升图像识别在复杂场景下的性能。原创 2025-04-05 21:08:46 · 579 阅读 · 0 评论 -
OpenCV 应用介绍
OpenCV是一个广泛用于计算机视觉任务的开源库,在医疗影像分析中的病灶识别与定位方面有重要应用,以下是其相关介绍:原创 2025-03-28 23:46:25 · 386 阅读 · 0 评论 -
非完整移动多机器人系统的事件触发编队控制方法研究
定义:非完整移动机器人系统是指机器人的运动受到非完整约束的系统,即机器人的运动不能在所有方向上自由进行,例如常见的轮式移动机器人,由于车轮的滚动约束,其在某些方向上的运动受到限制。特点:具有运动学和动力学模型复杂、存在非完整约束导致运动规划困难、对环境感知和适应能力要求高等特点。原创 2025-03-25 20:43:54 · 615 阅读 · 0 评论 -
情绪分析和深度强化学习确实能够在一定程度上增强股市预测
在实际应用中,情绪分析和深度强化学习可以相互结合。例如,将情绪分析得到的结果作为深度强化学习模型的一个输入特征,让模型在做出决策时同时考虑市场情绪因素。有研究通过结合情绪分析和基于卷积神经网络的Q - learning算法,建立了股票投资预测方法,在对中国股市的实证研究中取得了较好的结果,帮助投资者在新上市股票上获得了较高的回报。原创 2025-03-24 22:14:32 · 481 阅读 · 0 评论 -
使用元学习进行 span detection(少样本命名实体识别)的 Python 示例代码,包含数据集封装、使用现有模型测试以及对比测试
以下是一个使用元学习进行 span detection(少样本命名实体识别)的 Python 示例代码,包含数据集封装、使用现有模型测试以及对比测试。这里我们使用库中的预训练模型,以简单的 Few-Shot 学习方式进行演示。原创 2025-03-22 08:47:23 · 315 阅读 · 0 评论 -
基于 TRIZ 理论的筏式养殖吊笼清洗装备设计研究
例如,增加超声波场,利用超声波的空化效应辅助清洗。例如,采用多关节机械臂连接清洗刷头,通过传感器感知吊笼的轮廓,控制机械臂运动,实现对不同部位的精准清洗,提高清洗效率的同时减少不必要的能耗。通过调整清洗剂的成分和浓度,增强对污垢和附着生物的溶解和剥离能力,降低清洗所需的水压,从而在保证清洗效果的前提下,减少设备功率需求,降低能耗。构建初始物 - 场模型:分析清洗过程中的物质和场,确定清洗设备(刷子、高压水枪等)为作用物(S1),吊笼及污垢为被作用物(S2),清洗力(机械力、水流冲击力等)为场(F)。原创 2025-03-21 18:41:24 · 613 阅读 · 0 评论 -
通过MATLAB和Carsim进行联合仿真,利用强化学习实现自动驾驶人机控制权策略的详细步骤和示例代码
Carsim配置:对Carsim进行必要的设置,包括车辆模型、道路场景等,并生成S - function接口。MATLAB环境搭建:在MATLAB中配置Carsim的S - function,并创建强化学习环境。定义强化学习问题:确定状态空间、动作空间、奖励函数等。训练强化学习智能体:使用MATLAB的强化学习工具箱训练智能体。联合仿真:将训练好的智能体与Carsim进行联合仿真。假设状态包括车辆的速度、位置、驾驶员干预信号等。% 定义状态空间% 车辆速度% 车辆位置% 驾驶员干预信号。原创 2025-03-17 21:05:30 · 424 阅读 · 0 评论 -
生成雷达辐射源信号,包括常规单脉冲信号、线性调频信号、二相码信号、四相码信号、频率编码信号的实现形式
通过以上步骤,我们实现了不同调制方式的雷达辐射源信号的生成,并使用 ShuffleNet 网络算法对这些信号进行了识别。需要注意的是,上述代码中的信号生成函数(如等)需要根据前面的信号生成代码进行实现。同时,实际应用中可能需要对代码进行进一步的优化和调整。原创 2025-03-11 22:17:30 · 1198 阅读 · 0 评论 -
简单的 Python 示例,用于生成电影解说视频的第一人称独白解说文案
以下是一个简单的 Python 示例,用于生成电影解说视频的第一人称独白解说文案。这个示例使用了 OpenAI 的 GPT 模型,因为它在自然语言生成方面表现出色。原创 2025-03-09 13:18:53 · 959 阅读 · 0 评论 -
基于X线影像的深度学习模型预测骨密度的研究进展
DXA通过发射两种不同能量的X线穿透人体,根据不同能量X线被骨骼和软组织吸收的差异,计算出BMD值。其测量部位主要包括腰椎、股骨近端等,具有较高的准确性和重复性,是目前临床诊断OP的金标准。然而,DXA也存在一些缺点,如对骨赘、血管钙化等干扰因素敏感,会导致BMD测量值假性升高;二维成像方式无法区分皮质骨和松质骨,不能准确反映骨骼内部结构;设备价格昂贵,维护成本高,限制了其在基层医院的推广。综上所述,基于X线影像的深度学习模型在骨密度预测方面展现出巨大潜力,为骨质疏松症的早期筛查和诊断提供了新的有效手段。原创 2025-03-06 13:26:54 · 955 阅读 · 0 评论 -
使用 PyTorch 训练光学神经网络来预测网络物理量的示例代码
数据准备:生成或加载用于训练和测试的数据集。模型定义:定义一个简单的全连接神经网络模型。损失函数和优化器:选择合适的损失函数(如均方误差损失)和 Adam 优化器。训练模型:使用训练数据对模型进行训练。评估模型:使用测试数据评估模型的性能。原创 2025-03-05 21:35:33 · 467 阅读 · 0 评论 -
使用LSTM(长短期记忆网络)模型和TensorFlow框架进行自然语言处理的示例
以下是一个使用LSTM(长短期记忆网络)模型和TensorFlow框架进行自然语言处理的示例,具体任务是对电影评论进行情感分析(积极或消极),使用的数据集是IMDB电影评论数据集。原创 2025-03-04 18:20:17 · 650 阅读 · 0 评论 -
实现了一个自适应的NOC路由机制,包括构建流量图、设计拥塞预测模型、优化路由策略和评估性能
通过以上步骤,我们实现了一个自适应的NOC路由机制,包括构建流量图、设计拥塞预测模型、优化路由策略和评估性能。在实际应用中,可以进一步优化神经网络模型和路由算法,以提高NOC系统的性能。原创 2025-02-27 21:55:06 · 624 阅读 · 0 评论 -
使用MATLAB结合EasySpin进行ESR模拟的详细步骤及示例代码
安装EasySpin:确保你已经安装了EasySpin工具箱,它可以帮助你进行ESR模拟。你可以从EasySpin的官方网站(https://easyspin.org/)下载并安装。准备实验数据:将实验得到的EPR数据整理成合适的格式,一般包含磁场(Magnetic Field)和信号强度(Intensity)两列。进行模拟:使用EasySpin的函数对单线态氧自由基和超氧自由基进行模拟。调整参数:通过调整模拟参数,使模拟得到的峰型和峰位置与实验数据尽可能匹配。导出数据。原创 2025-02-27 21:39:59 · 1442 阅读 · 0 评论 -
本地部署 GitHub 上的 Python 人脸识别项目
首先,在本地打开命令行终端(如 Windows 的命令提示符或 Linux 的终端),进入你想要存放项目代码的目录,然后使用。文件,你可能需要查看项目的 README 文件,按照其中的说明手动安装所需的库,常见的人脸识别相关库有。在命令行中进入项目目录,运行相应的命令启动项目。一般来说,项目的 README 文件会说明如何运行项目。常见的运行命令可能是。文件(如果有),里面列出了项目运行所需的依赖包。以下是一个简单的示例代码,假设项目的主文件是。进入克隆下来的项目目录,查看项目的。比如某个项目仓库地址是。原创 2025-02-26 21:59:29 · 931 阅读 · 0 评论 -
使用 `gnpy` 进行全网光传输质量预测并生成光数据的示例代码
gnpy是一个用于光网络规划和优化的开源 Python 库,可用于全网光传输质量预测并生成光数据。以下是使用gnpy。原创 2025-02-26 21:54:14 · 677 阅读 · 0 评论 -
基于Matlab实现汽车远近光灯识别的详细步骤及代码示例
以下是一个基于Matlab实现汽车远近光灯识别的详细步骤及代码示例,主要通过图像处理技术来区分远光灯和近光灯。原创 2025-02-25 23:06:21 · 865 阅读 · 0 评论 -
复现一篇关于图像处理和计算机视觉中目标检测模型算法论文的详细步骤及示例代码
以下是复现一篇关于图像处理和计算机视觉中目标检测模型算法论文的详细步骤及示例代码。我们以经典的 YOLOv5 目标检测算法为例,因为 YOLOv5 是一个非常流行且易于复现的目标检测模型,同时有丰富的开源代码和文档支持。原创 2025-02-23 13:47:54 · 592 阅读 · 0 评论 -
python主要功能是读取原始数据集,将其分割为训练集和测试集,并提供方法来获取训练集、测试集和计算数据集的输入特征和输出标签,方便后续的机器学习模型训练和评估
Dataload该类的主要功能是读取原始数据集,将其分割为训练集和测试集,并提供方法来获取训练集、测试集和计算数据集的输入特征和输出标签,方便后续的机器学习模型训练和评估。原创 2025-02-08 12:20:38 · 419 阅读 · 0 评论 -
基于Python实现的完整解决方案,用于对包含四个类别的1500张图像数据集进行分割、训练模型,并提供简易前端和可视化结果
数据准备:加载和预处理数据集,将其划分为训练集、验证集和测试集。模型构建:构建一个简单的CNN模型。模型训练:使用训练集对模型进行训练。模型评估:使用测试集评估模型,计算F1分数、准确率、混淆矩阵和PR曲线。前端开发:使用Streamlit创建简易前端,展示训练结果和可视化图表。原创 2025-02-07 21:29:08 · 379 阅读 · 1 评论 -
python 实现了一个完整的证据随机森林分类器,包括模型的初始化、训练、预测和评分等功能
这段代码定义了一个名为ERF的类,它继承自sklearn库中的和,实现了一个证据随机森林(Evidential Random Forest, ERF)分类器。原创 2025-02-05 18:50:54 · 718 阅读 · 0 评论 -
复现论文“去模糊算法”
数据准备:读取模糊图像和 IMU 数据。模糊核估计:根据 IMU 数据估计模糊核。图像去模糊:使用估计的模糊核进行图像去模糊。原创 2025-02-04 13:09:28 · 871 阅读 · 0 评论 -
使用WGAN(Wasserstein Generative Adversarial Network)网络对天然和爆破的地震波形图进行分类
本项目旨在使用WGAN(Wasserstein Generative Adversarial Network)网络对天然和爆破的地震波形图进行分类。WGAN是一种生成对抗网络的变体,它通过引入Wasserstein距离来改善传统GAN训练不稳定的问题。我们将利用地震波形图数据训练WGAN的判别器,使其能够准确区分天然地震和爆破地震的波形。原创 2025-02-01 11:31:38 · 799 阅读 · 0 评论 -
在本地部署DSR1模型的技术方案和步骤指南
在本地部署DSR1模型,支持10人同时使用,具备团队知识库和个人知识库功能,同时能够连接网页、邮箱、Slack等聊天工具,类似于AI Agent。原创 2025-01-31 09:32:02 · 1741 阅读 · 0 评论 -
Python实现复原毫米波雷达呼吸波形的示例
数据准备:生成或加载毫米波雷达的呼吸波形数据。定义VAE模型:包括编码器和解码器。定义损失函数:结合重建损失和KL损失。训练模型:使用数据训练VAE模型。波形复原:使用训练好的模型复原呼吸波形。原创 2025-01-30 08:55:32 · 675 阅读 · 0 评论