一、基础知识介绍
众所周知, CAP是分布式系统事务处理的重要理论。
介绍一下,CAP是下面三个英语单词的首字母缩写:
C (Consistency): 数据一致性
A (Avalibility):系统可用性
P (Partition Tolerance):分区容错性
使用:在一个分布式系统中,最多只能满足这三个特性中的两个,而不能三个全部满足。
其中,A又分 2 种:
系统可用性:提供 7 X 24 持续性服务,关注的是时间维度的可用。只要满足请求之后,有响应的数据返回就可以,不关注返回数据是否正确和完整。
系统可靠性:正确的指令得到正确的输出,关注的是信息的准确性。关注在返回数据的正确和完整。
例如系统的集群机制、反向代理机制、服务治理机制,系统降级机制,都是为了解决系统的可用性问题。
二、CP 和 AP 的使用场景
1. CP 使用场景
比较典型的 CP 系统是分布式数据库,数据的一致性是最基本的要求。在极端情况时,优先保证数据的强一致性,代价就是放弃系统的可用性。例如,类似 HBase 这种分布式存储系统,以及 ZooKeeper 这种分布式协调系统。
2 . AP 使用场景
对多数大型互联网应用的场景,主机众多,分布式部署,而且集群的规模越来越大,所以对于大型互联网公司,节点故障、网络故障时有发生,要保证系统的可用性达到多个9,保障 AP 放弃 CP 是常见的一种做法。例如,Redis
为什么说Redis是AP的?
因为Redis一致性模型是最终一致性,它分布式设计中,采用异步复制,就是当某个节点上的数据发生变化时,Redis会将这个修改操作发送给其他节点,但是,由于网络传输延迟等原因,这些操作不一定会被其他节点马上接收和执行,这样可能导致节点之间数据不一致。如果当一个节点挂了的时候,这个节点上的数据有可能无法同步到其他节点,可能导致节点之间数据不一致。
三、微服务服务发现的选型
1. 服务发现用CP实现
提高数据一致性C,放弃可用性A
比如 Eureka。
2 . 服务发现用AP实现
提高可用性A,放弃数据一致性C。
比如 Nacos(Nacos也有CP实现的模式)。