AIM333 | Taco Bell 如何通过机器学习预测改善数字可用性
关键字: [Amazon Web Services re:Invent 2023, Amazon Forecast, Machine Learning Forecasting, Digital Availability, Amazon Forecast, Taco Bell, Data Analytics]
本文字数: 2300, 阅读完需: 12 分钟
视频
导读
准确的需求预测可以帮助公司实现收入最大化和库存成本最小化。部署基于机器学习预测的传统方法要求客户点击用户界面,或者学习如何使用 API 和 Jupyter 笔记本。这两个因素都增加了持续、可持续的大规模生产运营的障碍。在本次分享中,了解像 Taco Bell 这样的客户是如何部署无代码解决方案的,这些解决方案使用许多亚马逊云科技服务(如 Amazon Step Functions 和 Amazon CloudFormation)实现自动化 Amazon Forecast 管道。此解决方案有助于部署和管理许多解耦和并发的企业级工作负载。
演讲精华
以下是小编为您整理的本次演讲的精华,共2000字,阅读时间大约是10分钟。如果您想进一步了解演讲内容或者观看演讲全文,请观看演讲完整视频或者下面的演讲原文。
亚马逊预测的高级产品经理Brandon Nair在视频中向观众致欢迎辞,主题为Taco Bell如何利用机器学习和亚马逊预测来提高餐厅的数字可用性。他介绍了他的共同演讲者,分别是来自亚马逊云科技的首席AI/ML专家Charles Laughlin和Taco Bell的数据与分析总监Neeraj Revankar。
Brandon首先对亚马逊预测进行了简要介绍,指出这是一款基于云的服务,让开发人员和企业能够轻松构建高度准确的机器学习模型进行需求预测,无需成为机器学习专家。该服务涵盖了数据预处理、特征工程、模型训练、评估和部署等整个过程,这在从头开始构建预测模型时通常需要大量努力和专业知识。
他强调,与传统的统计预测模型相比,亚马逊预测生成的机器学习模型可能准确度高出50%。这种准确性部分是通过自动培训多种不同的算法,包括基于神经网络的算法,然后将最准确的模型组合成一个生产模型实现的。他还提到了亚马逊预测在需求规划、供应链优化和财务规划等使用场景下的专门化时间序列预测能力。
接着,Brandon通过一个具体案例展示了如何使用该服务。从客户提供与他们想要预测的历史数据开始,亚马逊预测会处理数据预处理步骤,如处理缺失数据和用节假日和天气等相关因素丰富数据集。该服务使用名为AutoPredictor的自动化机器学习技术来构建模型。AutoPredictor高效地尝试多个机器学习算法和超参数,评估性能,并自动生成最优的集成模型。
亚马逊预测(Amazon Forecast)是一款强大的工具,可以帮助企业预测各种业务指标的需求,如销售额、库存量和客户数量。一旦模型建立好后,亚马逊预测可以轻松地进行部署、获取预测结果、监控随着时间的推移的性能,并在需要时进行重新训练。例如,其What-If分析等特殊功能允许客户了解诸如价格等输入变量变化对预测需求的影响。令人兴奋的是,布兰登宣布亚马逊预测最近推出了一项针对没有历史数据的新产品的冷启动预测新功能。通过查看产品元数据并找到相关产品,现在的冷启动预测可以以高达45%的准确性预测新产品的需求。
接下来,塔可钟(Taco Bell)的尼尔·瑞瓦卡(Neeraj Revankar)走上舞台,解释他的团队是如何使用亚马逊预测的,以及这为优化塔可钟餐厅的数字可用性带来了什么价值。他通过分享塔可钟在全球7000个地点每年服务超过10亿份订单的信息来提供有用的背景。随着新冠疫情的影响,提货、送货和驾驶窗口的数字化订单渠道变得越来越重要。尼尔的团队的主要任务是确保塔可钟餐厅数字订购通道的高可用性和可靠性。当数字订购渠道因技术问题而中断时,会导致糟糕的客户体验,甚至可能触发第三方配送应用在暂时禁用餐厅位置之前手动重新启用该餐厅。因此,尼尔需要一个能够在几小时内识别出任何餐厅的数字订购通道不可用情况的方法,以便在能够迅速解决问题之前不会影响顾客和配送伙伴。
通过与亚马逊预测合作,尼尔的团队利用从餐厅流到云的实时POS数据,开发了一个用于检测特定位置数字订单异常下降的机器学习模型。该模型解释了每天的正常波动,并准确地识别出表明停机的异常指标。
亚马逊预测(Amazon Forecast)在检测到潜在的服务中断时,会自动触发电子邮件警报,通知受影响的餐厅进行调查并恢复数字服务。这种方式相较于传统的仅在一天后才收到问题报告的方式,大大提高了我们对问题的认识。快速解决服务中断问题将提升客户体验,并有效地使塔可贝尔(Taco Bell)的数字容量增加数百个虚拟餐厅。
回到正题,亚马逊云科技的查尔斯·拉夫利(Charles Laughlin)深入解释了亚马逊预测如何为塔可贝尔提供如此快速的价值。他在2.5周内就完成了案例投入生产。他指出,亚马逊预测包含了大量的机器学习最佳实践,并消除了数据准备、模型建设和基础设施管理等方面的繁重工作。这使得像塔可贝尔这样的客户能够在几天或几周内开始实现商业价值,而不是通常所需的几个月时间来开发预测能力。
查尔斯还强调了其他亚马逊云科技服务,如CloudFormation和Step Functions,是如何发挥关键作用的。CloudFormation通过部署亚马逊预测工作流程提供了可重复的基础设施代码。Step Functions负责协调工作流步骤,如获取数据、触发训练、部署模型和生成预测。异步和自动化的Step Functions编排允许工作流在每个阶段进展而不需要延迟或等待人工干预。
总的来说,查尔斯总结说,亚马逊预测提供了最先进的的时间序列预测模型,并不断改进内置的模型库。结合其他的亚马逊云科技服务,它使塔可贝尔能够迅速实现业务目标。这些示例有效地传达了亚马逊预测如何通过简化对机器学习预测的访问以及其自动化和管理功能,从而快速创造价值。对于有预测需求的公司来说,亚马逊预测被视为一条比开发内部能力更快捷的道路来利用AI/ML。
下面是一些演讲现场的精彩瞬间:
布兰登·奈尔(Brandon Nair)、查尔斯·拉弗钦(Charles Laughlin)和尼尔杰·雷瓦卡(Neeraj Revankar)探讨了塔可贝尔(Taco Bell)如何通过运用亚马逊预测(Amazon Forecast)来提升业务价值。
亚马逊预测(Amazon Forecast)采用了名为自动预测器(auto predictor)的自动化机器学习技术,能够通过自动优化超参数和在多种算法集合中进行建模,从而创建出高度准确的预测模型。
亚马逊预测(Amazon Forecast)具有在生产环境中实现和维护机器学习模型的功能,例如托管模型、定时推断以及追踪模型随着时间的推移的准确性。
此外,亚马逊预测(Amazon Forecast)还允许用户通过调整诸如价格等变量来观察需求预测的变化,这一新功能使得客户能够以前所未有的准确度预测新产品的需求,提高达45%。
通过对客户数据的收集和分析,公司能够改进数字渠道并满足不断变化的消费者偏好。
为了引导用户开始使用亚马逊云科技预测(Amazon Forecast),提供了一张包含操作指南和资源的GitHub网站的二维码。
总结
在re:Invent的演讲中,探讨了Taco Bell如何运用亚马逊预测(Amazon Forecast)这一完全托管的亚马逊云计算机器服务,以提高其数字可用性和客户体验。
演讲从亚马逊预测的主要功能开始,包括自动化机器学习模型构建、在生产中托管模型以及商业洞察工具。亚马逊预测简化了机器学习预测过程,使得开发人员无需具备机器学习专业知识便能创建高度准确的模型。
随后,我们听取了塔可钟数据和分析总监Neeraj Revankar的介绍,他分享了他的团队是如何应用亚马逊预测的。随着数字订单的增长,无论是通过应用程序、亭子还是第三方配送,Taco Bell都需要确保其商店始终保持在线。通过将实时POS数据传输到云端并建立使用亚马逊预测的模型来预测预期数字订单,Taco Bell能够迅速发现潜在的服务中断并采取行动。这已经大大改善了其对数字可用性的了解。
最后,来自亚马逊云科技的Charles Laughlin详细介绍了如何使用亚马逊预测以及其他配套服务,如CloudFormation和Step Functions,以实现快速的价值实现。通过用于管理基础设施的CloudFormation模板和协调机器学习工作流的Step Functions,用户可以将数据转化为生产化的预测,仅需几天或几周的时间。
总的来说,亚马逊预测简化了获取准确机器学习预测的途径,Taco Bell通过预测数字可用性实现了商业价值,而亚马逊云科技的服务有助于加速解决方案的部署。使用亚马逊预测进行预测可以快速带来实际好处。
演讲原文
想了解更多精彩完整内容吗?立即访问re:Invent 官网中文网站!
2023亚马逊云科技re:Invent全球大会 - 官方网站
点击此处,一键获取亚马逊云科技全球最新产品/服务资讯!
点击此处,一键获取亚马逊云科技中国区最新产品/服务资讯!
即刻注册亚马逊云科技账户,开启云端之旅!
【免费】亚马逊云科技中国区“40 余种核心云服务产品免费试用”
亚马逊云科技是谁?
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者,自 2006 年以来一直以不断创新、技术领先、服务丰富、应用广泛而享誉业界。亚马逊云科技可以支持几乎云上任意工作负载。亚马逊云科技目前提供超过 200 项全功能的服务,涵盖计算、存储、网络、数据库、数据分析、机器人、机器学习与人工智能、物联网、移动、安全、混合云、虚拟现实与增强现实、媒体,以及应用开发、部署与管理等方面;基础设施遍及 31 个地理区域的 99 个可用区,并计划新建 4 个区域和 12 个可用区。全球数百万客户,从初创公司、中小企业,到大型企业和政府机构都信赖亚马逊云科技,通过亚马逊云科技的服务强化其基础设施,提高敏捷性,降低成本,加快创新,提升竞争力,实现业务成长和成功。