- 博客(20)
- 资源 (1)
- 收藏
- 关注
原创 【标题】深度学习与激光器设计变革
此处有判断过拟合和欠拟合的标准图,【P119】,我们的模型设计和修正是在拟合和过拟合之间寻求平衡。在一个由“线性”+“激活”单元构成的网络中,当不同的输入呈现给网络时,不同的单元会对相同的输入在不同范围内响应;因为神经网络是线性运算单元(wx+b)和激活函数单元的组合或嵌套,所以只需要“线性运算”和“激活函数”都是可微的(能轻易算出解析式),那么其组成的网络一定可微。即使我们有一个包含数百万参数的复杂模型,只要我们的基本模型单元是可微的,计算关于参数的损失梯度就是写出导数的解析表达式,并计算一次。
2024-03-14 17:03:18 822
原创 找组织——机器学习社区、团体洞察
在Github上,有一些中文社区可以看一看:prompt“如果我是个AI小白,想参加到一个组织,接收最新的AI有趣源项目、一些定期的刊物等。我应该加入哪些组织?
2024-03-12 11:50:43 634
原创 机器学习与深度学习:方法与应用洞察
本论文有数页篇幅介绍,此处略。和《pytorch深度学习与实践》里分步讲的卷积层、池化层、全连接层、正则化、优化器选择类似。原文还介绍了如何提高CNN性能的方法等。如新手可看该论文原文,增强交叉理解。
2024-03-07 17:39:20 923
原创 电脑C盘优化(模拟电脑故障时快速恢复环境)
分析:经过近两个小时分析,占用150G的C 盘的两个大的原因找到了:一、anaconda 程序5G,及.conda文件夹10G(用everything搜到)二、“桌面”文件夹5G,“下载”文件夹50G(出乎意料)
2024-03-04 22:27:59 395 1
原创 mini项目(完结):透明材料的折射率、二、三、四色散计算器
近期有一求助,“收集/列表在临近1微米波长处,空气、水、石英玻璃,K9玻璃的2、3、4阶色散系数和n2值?(一张4 X4的色散和非线性参数对比表)”此轮下来,Google Gemini完胜。根据Gemini的提示,我发现直接去找太难。因为材料+波长+二、三、四阶这几个限定词,需要搜索量过大。几个关键词合并,几乎搜索不出来。但是在查找肖特玻璃参数库的时候,发现其实好搜的是标准玻璃各种系数,再用sellmeier方程去自己算。
2023-12-22 11:00:24 810
原创 Opencv人脸追踪-----Github上代码复现
二、Much better demo: put a laser pointer on it. Bonus points: ensure it avoids all eyeballs.作者回复:True. Actuators are cringe and the display accuracy definitely doesn't match the capability of that gimbal device thingy.二、YOLO在树莓上运行,最多三四帧,而且大大牺牲了识别的精度。
2023-11-20 10:20:00 222 1
原创 BOOK 《Flask Web开发实战--入门、进阶与原理解析》笔记
->放到某文件夹并右键用Git打开-->pipenv install --> pipenv shell-->pipenv install flask。1.3 测试用开发服务器 --> flask run【失败:以一种访问权限不允许的方式做了一个访问套接字的尝试】1.1 安装Git bash->github下载随书附带代码(1.2 示例程序,Hello,Flask!
2023-09-05 17:50:10 253 1
原创 【项目文档-中止】超快计算器UFO_calculator.exe前奏篇
chatgpt等AI工具可以作为您的辅助工具,帮助您编写计算函数 时间安排: - 第1-2周:UI前端开发 - 第3-6周:后端开发 - 第7-10周:领域专业知识的计算器开发 - 第11-12周:集成前后端,测试和部署。听闻在新的AI时代,信息开源时代,会有许多超人,如野生钢铁侠一样完成以前很多人才能完成的工作,站在巨人的肩膀。人员分工: - 您负责您将负责整个项目的开发,包括前端、后端、数据库设计和开发、集成测试和部署,以及领域专业知识的计算函数编写。首先,您需要确定您将使用的技术栈。
2023-08-28 17:23:19 435 1
原创 ChatGPT编程加速---新知识快速学习及无代码编程-----“退火算法”篇
问:请帮我详细讲一讲退火算法的原理Chatgpt答:退火算法是一种基于模拟物理退火过程的全局优化算法,它的基本思想是通过模拟物理退火过程,使系统从高能状态逐渐转化为低能状态,从而达到全局最优解。具体来说,退火算法的原理如下: 1. 初始化:随机生成一个初始解,设为当前解,并设定一个初始温度。2. 选择邻域解:在当前解的邻域中随机选择一个解。3. 计算能量差:计算当前解与邻域解之间的能量差。4. 判断是否接受邻域解:如果邻域解的能量比当前解低,则接受邻域解作为新的当前解;
2023-08-25 10:02:17 149 1
原创 shg_frog-----Github上代码本地化封装.exe
一、先构建python37虚拟环境,并在虚拟环境中进行下面操作。【本电脑中在conda中新增python37虚拟环境,并在其中运行】二、安装依赖包requirements.txt和Vimba SDK.exe并重启电脑。三、在虚拟环境cd到该文件夹内执行命令:shg_frog 即可打开界面。但不能像说明书所写的加[-h],否则没有界面出来。然后,然后,有以下几个问题:一、除了在自己的环境中,其他小白用不了。用了原来的pyinstaller -F -w xxx.py神句,打包完也完全没反应。
2023-08-02 16:20:49 477
原创 ChatGPT编程加速---新知识快速学习及无代码编程-----“遗传算法”篇
在 `evolve` 方法中,我们初始化种群,然后进行若干代的进化,每一代都进行选择、交叉和变异操作,并输出最优个体。需要注意的是,遗传算法是一种启发式的优化算法,不保证一定能够找到全局最优解,但通常在搜索空间较大且复杂的优化问题中具有较好的搜索能力。初始化种群:根据问题的特征,初始化一个初始种群,种群中包含若干个个体,每个个体表示问题的一种解决方案,并且具有一定的随机性。种群的大小和个体的编码方式需要根据问题的特性进行设置。交叉操作:通过交叉操作,将选出的父代个体的基因进行交换或重组,生成新的子代个体。
2023-07-27 15:48:47 284 1
原创 BOOK《深入浅出神经网络与深度学习》Michael Nielsen 要点
随机初始化神经网络的权重和偏置,有概率会导致神经元输出饱和,此时使用MSE(二次代价函数)时,即使犯了明显错误,但因为设置到其导数平坦区(饱和区),导致学习率缓慢。
2023-07-21 15:16:12 379 1
原创 《AI大模型之美》笔记备忘
注意,colab的文件存在:/content/drive/MyDrive/Colab Notebooks文件夹里。Colab: 在线使用Jupyterlab,无需本地搭建环境 https://colab.research.google.com/2.1重新出发,学会和AI说话——调通系统,完成和chatgpt 的API_KEY 首次连接,返回数据。/完成Colab的使用。接下来:使用终极解决方案,即用colab访问云盘的东东:事先把课程相关资料传到Google云盘,然后按照路径规则就可以随意访问。
2023-05-31 15:19:03 248
原创 Git / GitKraken 安装及使用
GitKraken 图形界面软件,方便版本对比、更新版本、多人协作等。完全可视化的提升生产力工具。从此电脑不再n多版本,n个命名,找不到版本之间的区别了。
2023-05-24 16:54:15 1328
原创 Transformer复现——《深度学习框架PyTorch:入门与实践》11章的书本案例
山僧同宿寺,野客共归期。相思不相见,应喜白云知。和风吹雨过江城,万里云山一望平。不见江南人不见,空闻塞上戍楼声。慧星现,现在四方同。若在诸天幷五日,不然一法定无踪,不是一般通。美人歌舞罢,独自对花时。今日花前去,明朝叶上垂。智者不可见,愚者不可论。愚人不识面,智者不识门。的的无消息,啾啾空夜啼。不知人事少,何处更相携。没找到,于是修改了run_server.py。,每次同等情况下,生成的结果一致,可重复性高。月落星稀夜未央,月明灯暗满衣裳。儿童不识汉家翁,一种青山万岁中。分析),模型倾向越好。
2023-04-13 11:35:11 173
原创 lyrics_generation复现-----Tensorflow
内存开销,这个极大,开始运行不起来,提示内存满了。解决方案:有很多解决方案,最后一行最小化工作量尝试是:在。,点运行此文件,右图泪奔了。虽有报错,但歌词生成了。在百度搜索,出的损招重新安装,后来发现不对。,将作者训练好的参数模型(,对应拷贝到承载模型。中先进入日志存放的目录(注:非常重要),再运行。,并将日志的地址指向程序日志输出的地址。旁边,并且轻微的不匹配导致了此导入错误。: 歌词生成,加载已训练模型生成数据。满跑,但计算器不卡,内存也还好,占用了。在训练过程中,在训练文件夹中生成了。
2023-04-13 10:38:29 213
原创 Python QT笔记
但问题是,这些大都是碎片化的信息。对于初学者,东学西学,学的越多碎片,越容易困惑。没有结构化的知识,和可重复性复习的教材。隔段时间再回来,脑中什么都没有。本文推荐是另一种可复制的有效学习方法,不仅适合QT,也适合其他领域知识或工具。优点:1,对QT软件安装、QT的设计原理、优秀便捷的程序架构思想、敏捷开发方法都有非常好的介绍和实战。会对日后做QT,甚至整个项目开发打下非常坚实的基础。缺点:书本写的对初学者有些晦涩难懂,虽仅有两章,也需要沉下心学几天。对于QT, 新手经常做到哪查到哪。
2023-04-13 10:25:30 350 1
原创 Python分析过程变量方法/Debug使用方法
例如你想引用一个新的开源库,运行库的example后,利用该功能很容易从大量的变量名中找到我们需要。一样,在程序运行完成后,查看每个变量并继续对变量进行操作的方法,即勾选。方法三:Pycharm——不同于Jupyter只能看信息概要。自己去源代码中按图索骥,反向一步步找库函数的源代码涉及的。然后再按照方法一,带着结果去找代码,效率翻倍。插件来实现,查程序运行后的变量数组在哪都有什么。方法二:Jupyter——实时显示变量是通过。
2023-04-13 10:07:59 530
原创 Python/Pytorch/Tensorflow/QT安装
就算多个项目使用同一个版本的python,这时候还是需要创建conda虚拟环境的,比如一个项目用Pytorch开发,一个项目用TensorFlow开发,不同框架对python包依赖,对底层库的依赖是不同的, 此时可能会起冲突,比如安装Pytorch后再安装TensorFlow时可能会将Pytorch所用依赖更新,则会导致Pytorch无法运行。(如安装5.15以上,出了错被卡了2~3天还没解决,因为太新,网上也没有很多修正bug的方案。安装python时,不必单独安装,可直接安装anaconda。
2023-04-10 20:19:56 1372 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人