图数据库Neo4j入门
作者:雨水/家辉 日期:2017年3月31日 CSDN博客:http://blog.csdn.net/gobitan
摘要:Neo4j是目前应用最为广泛的图数据库,它特别适合于处理复杂网络关系。Neo4j支持多种不同的操作系统,这里以windows为例简单介绍Neo4j的基本入门使用情况。
第一步:下载Neo4j安装包
Neo4j安装包的下载可以直接从官网
https://neo4j.com/download/下载。官网下载速度很慢,建议到Neo4j的中国合作伙伴
微云数聚网上去下载,地址为:
http://www.we-yun.com/index.php/blog/releases-56.html
Neo4j分为企业版和社区版,企业版是需要付费的。社区版是免费的。在基本功能上两个版本没有区别,企业版相比社区版拥有一些高级特性,如集群等。具体可参考官网
https://neo4j.com/editions/关于两个版本的区别。对于一般中小型应用社区版就足够用了,因此,这里选择社区版。当前(2017-03-31)最新版为3.1.3。neo4j-community_windows-x64_3_1_3.exe大约110多M。
第二步:安装Neo4j
双击neo4j-community_windows-x64_3_1_3.exe,安装默认的路径安装即可。在win7下会默认安装到C:\Program Files\Neo4j CE 3.1.3目录下。
第三步:启动Neo4j
通过启动菜单或者双击安装目录下的C:\Program Files\Neo4j CE 3.1.2\bin\neo4j-ce.exe即可启动Neo4j的启动界面。启动界面指定了默认数据库的位置,如类似C:\Users\dennis\Documents\Neo4j\default.graphdb。点击界面上的"start"即可启动。启动成功后,在Status部分有浏览器的网址 http://localhost:7474/,点击即可进入Neo4j的浏览器界面。第一次登陆的时候,默认用户名和密码为neo4j/neo4j。登陆后要求更改密码。
第四步:Neo4j配置
Neo4j的默认配置文件位于%APPDATA% \Neo4j Community Edition\neo4 j.conf,如我的电脑C:\Users\dennis\AppData\Roaming\Neo4j Community Edition\neo4 j.conf。这里介绍几个实用的配置项。
(1) 去掉密码:默认通过浏览器访问neo4j时需要输入用户名和密码,对于学习和测试,可去掉密码。将dbms.security.auth_enabled的值改为false,即:dbms.security.auth_enabled=false
(2) 网络访问:默认Neo4j只支持本地访问,如果要从网络中的其他主机访问Neo4j,需要修改如下两项配置。
dbms.connector.http.listen_address=0.0.0.0:7474
dbms.connector.bolt.listen_address=0.0.0.0:7687
这里的0.0.0.0代表绑定主机所有IP地址,也可以替换为指定的IP地址,这样写一般用于测试环境。
注意:要想使得修改了的配置项立即生效,必须重启Neo4j。
第五步:使用附带的样例数据
在Neo4j的浏览器界面中的命令行输入":play movie-graph",然后回车或者点击右侧的"play"按钮将进入电影图的样例指南。这个指南将带领你如何把电影数据插入到图数据库中去,并且如何查询这些数据。电影数据导入后在图中呈现的效果如下:
此外,还可以用过在命令行输入":play northwind-graph"来进入一个从CSV文件导入数据的例子。
基本使用
Neo4j提供了Cypher查询语言,它类似于关系型数据库中的SQL语句。
如用:
(1) 创建一个节点:create (n: Person {name: "Dennis"}) return n
(2) 查询所有的Person节点:match (n: Person) return n
(3) 查询名为"Dennis"的Person节点:match (n: Person) where n.name="Dennis" return n
中文版
Neo4j的中国合作伙伴微云数聚发布了Neo4j中文扩展包,支持了很多更丰富的特性,如节点支持链接图片等。详情可参考微云数聚官网:
http://www.we-yun.com
参考资料:
[1]
https://neo4j.com/ Neo4j, the world's leading graph database - Neo4j Graph Database
[2]
http://www.we-yun.com
微云数聚 图数据库 数据可视化 商务智能 BI neo4j