四步直观理解傅里叶变换 Four steps to understand Fourier Transform intuitively

已经老大不小了,在看到 FFT/DFT 时,心里总还是有点虚。
网上关于傅里叶的材料不少,但:1)要么是非常直观地展示频域和时域的关系;2)要么是详尽地做数学推导。
对我来说,更希望有一种材料,提纲挈领地把主要概念联系起来。

因此,今天做一整理,争取从此再不忘记这些基础知识。

对 FFT 的直观理解

直观理解:四步解决

傅里叶变换的相关参考资料纷纷复杂,这里指列举最主要的思路。

Step1假设每个周期函数,都可以转化为三角级数。这是傅里叶变换的基础。因为已经知道了采样的频率(周期),因此其每个 component 的频率只能是其整数倍,变换的目的是求其系数

Step2:三角函数的正交性(可见后文一种证明方法) ⇒ \Rightarrow 可以求输入信号与特定频率三角函数的内积(输入信号 x x x 乘以特定频率的三角函数,再求积分),此时其他频率的三角函数因为正交性而积分为 0,所以积分结果可用于表示对应频率函数的系数(频谱中的振幅)。

Step3:DFT,就是将上述积分行为,转化为点乘、求和,即内积;

Step4:DFT → \to FFT 的关键是,在三角函数(复指数函数)中存在若干性质,可用于简化计算。具体应用可参考 en.wiki,注意其中有一个关键是

Note that the eqalitites hold for k = 0 , … , N − 1 k=0,…,N-1 k=0,,N1 , but the crux is that E k E_k Ek and O k O_k Ok are calculated in this way for k = 0 , … , N 2 − 1 k=0,…,\frac{N}{2}-1 k=0,,2N1 only.

意思是,虽然关于 X k X_k Xk 的公式适用于所有 k 值,但其实只需要计算其中的一半就行,因为接下来要揭露 “两半” 之间的(由 复指数函数 性质得出)对应关系。 □ \square

小吐槽:en.wiki 比中文好的不是一点半点。

补充:怎么理解变换项

当我们看

X k = ∑ n = 0 N − 1 x n e − 2 π i N n k X_k = \sum^{N-1} _{n=0} x_n e^{-\frac{2\pi i}{N} nk} Xk=n=0N1xneN2πink

时,我们在看什么

首先, k k k 在其中的意思是,表达与频率为 k ω , ω = 2 π / N k\omega,\omega=2\pi/N ,ω=2π/N 三角函数相关。
这里有个小技巧,当我们看到分式 2 π k N \frac{2\pi k}{N} N2πk 时,其实看作 2 π N / k \frac{2\pi}{N/k} N/k2π 更直观:即周期缩短到 1 / k 1/k 1/k,自然地频率就是 k 倍。

求和索引 n n n (以及求和过程)的目的,是 引导 信号与频率为 k ω k\omega 的三角函数做内积:对于指数中的 n n n ,实际是取该三角函数在时间轴上的值。

最后,指数上的 负虚数 − i -i i 其实也可取 postive value,但取负值比较自然

补充:三角函数正交性 基于 复指数函数 的证明

不同于简单的三角函数问题,这个引理用数形结合并不能直观理解,但今日看到一个巧妙的做法。

已知

e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta} = \cos \theta + i \sin \theta eiθ=cosθ+isinθ

正交性问题是

∑ n N − 1 e 2 i π k n / N ⋅ e 2 i π t n / N ‾ = N ⋅ [ k = t ] [ k = t ] = 1    ⟺    k = t \sum^{N-1}_n e^{2i \pi kn /N} \cdot \overline { e^{2i \pi t n /N} } = N \cdot [k=t] \\ [k=t] = 1 \iff k=t nN1e2iπkn/Ne2tn/N=N[k=t][k=t]=1k=t

这里,
e 2 i π t n / N ‾ = e − 2 i π t n / N \overline{ e^{2i \pi t n /N} }= e^{-2i \pi t n /N} e2tn/N=e2tn/N
即共轭。

也就是,如果 k 与 t 不相同,那么其求和为 0,否则求和为 N。

在推导上式的过程中,不定积分的最后一步要注意 e 2 π i l = 1 e^{2\pi i l} = 1 e2πil=1 如果 l = m − n ≠ 0 l= m-n \neq 0 l=mn=0 。可见该 SO 帖子

就算不用复指数函数的正交性,也可以通过三角函数变换来证明。

其他闲话

McGill 大学相关教案值得参考:https://www.music.mcgill.ca/~gary/307/week6/node4.html

这里有一句话

This result is interesting because it suggests that, given a signal composed of many sinusoidal components, we can perform a sequence of dot-products with sinusoids of different frequencies to determine which are present in the signal.

其中 This result 就是指不同频率三角函数的正交性 orthogonality.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值