学习笔记:欧拉定理和费马小定理

欧拉定理:
任意整数a和n互素,可有:
a^{\varnothing (n)}=1 (mod n)

其中\varnothing (n)是欧拉函数,指小于n的素数的个数。

证明:

建立集合A=\left \{ X_{1}(modn),X_{2}(mod n),...,X_{\varnothing (n)} (mod n)\right \}是小于n的所有素数的集合;

再建立B=\left \{ aX_{1}(mod n),aX_{2}(mod n),...,aX_{\varnothing n}(mod n) \right \},可知该集合里所有元素必定是小于n的,

又因为a与n互素,并且X_{i}与n互素,所以aX_{i}也与n互素,故该集合内所有元素都小于n且与n互素;

假设i\neq j,有X_{i}\neq X_{j}aX_{i}(mod n)\equiv aX_{j}(mod n),则,因为a与n互素,有X_{i}(mod n)\equiv X_{j}(modn),与假设矛盾,因此集合B中没有相同的元素;

综上可得知,B集合是小于n的所有素数的集合,从而A=B;

可推得X_{1}*X_{2}*...*X_{\varnothing(n)}(modn)\equiv aX_{1}*aX_{2}*...*aX_{\varnothing (n)}(modn)

化简为:X_{1}*X_{2}*...*X_{\varnothing(n)}(modn)\equiv a^{\varnothing (n)}*X_{1}*X_{2}*...*X_{\varnothing (n)}(modn)

因为显然X_{1}*X_{2}*...*X_{\varnothing(n)}与n互素,所以两边约去,可以得到a^{\varnothing (n)}=1 (mod n)成立。

欧拉定理推论:
a^{\varnothing (n)+1}=a (mod n)

同样,因为a与n互素,因此还可以有等式a^{k\varnothing (n)+1}=a(mod n),k为任意整数。

由欧拉定理可以很容易得到费马小定理
即,p是一个素数,a为一个正整数并且不能被p整除,则有\varnothing (p)=p-1

得到:a^{p-1}=1 (mod p)

费马定理推论a^{p}=a (mod p)

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

榴莲 蛋挞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值