HDU 6265 Master of Phi 【公式题(欧拉函数)】

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265

思路:

首先要确定欧拉函数的一个特例 phi(1) = 1; 在欧拉函数的公式中 phi (n) = n*(1-q1)*(1-q2)*(1-q3)..... 只有n == 1的时候是不适用这个公式的;

其次,题目中要求的公式虽然感觉很复杂,但事实上,只要对公式整理一下,就能发现题目有很多地方是帮你化简了问题的,比如:在公式  phi(3)*n/3 中的分母 3是可以和分子中phi(3)抵消的,因为phi (3) = 3*(1-1/3);所以 phi(3)*n/3 == (1-1/3)*n;这个化简有什么作用?如果phi 没了前面的n,那么phi(6)/6 是等于 phi(36)/36 (只要两个数n1和n2 所包含的素数相同那么 phi(n1)/n1 == phi(n2)/n2);这个问题可以自己通过欧拉函数检验一下;

这里以36为例:

36的因数有  1,2,3,4,6,9,12,18,36;这些数分别用素数的乘积来表示会发现,他们都是由36包含的素数组成;而且2*3组合有2*2个,这两个2分别是 2^2 * 3^2的幂;那么问题就转变成 素数乘积的组合了;

解题方法有两种;

dfs(要用G++交题) 把n的素数个数与对应素数存起来,然后dfs取和不取的情况,就能得到对应的解;

第二种是直接写成公式:

知道欧拉函数的推导过程就不会难理解下面的公式:(+1是能不取这个素数的情况)

下面引用这个博客的图片:https://blog.csdn.net/weixin_38327682/article/details/79988278

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>

using namespace std;

typedef long long ll;
const int Mod = 998244353;
const int Maxn = 1e8+10;

ll inv[Maxn];
int m, ans, p[50], q[50];

//int pow_mod (int a, int n) {
//	if (n == 0) return 1;
//	int x = pow_mod (a, n/2);
//	ll ans = (ll)x*x % Mod;
//	if (n & 1) ans = ans*a % Mod;
//	return (int)ans;
//}

ll pow_mod (int a, int n) {
	ll ret = 1;
	while (n) {
		if (n & 1) ret = ret*a % Mod;
		a = (ll)a*a % Mod;
		n >>= 1;
	}
	return ret;
}

void dfs (int step, int sum) {
	if (step == m) {
		ans  = (ans+sum) % Mod;
		return;
	}
	int t = (ll)sum*(p[step]-1)%Mod*inv[p[step]]%Mod*q[step]%Mod;
	
	dfs (step+1, t);
	dfs (step+1, sum);
}

int main (void)
{
	int t;
	scanf ("%d", &t);
	while (t--) {
		scanf ("%d", &m);
		int n = 1;
		for (int i = 0; i < m; ++i) {
			scanf ("%d%d", p+i, q+i);
			n = (ll)n*pow_mod (p[i], q[i]) % Mod;
			inv[p[i]] = pow_mod (p[i], Mod-2);
		}
		ans = 0;
		dfs (0, n);
		printf ("%d\n", ans);
	}
	return 0;
 } 

第二种:

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>

using namespace std;

typedef long long ll;
const int Mod = 998244353;
const int Maxn = 1e8+10;

//int pow_mod (int a, int n) {
//	if (n == 0) return 1;
//	int x = pow_mod (a, n/2);
//	ll ans = (ll)x*x % Mod;
//	if (n & 1) ans = ans*a % Mod;
//	return (int)ans;
//}

ll pow_mod (int a, int n) {
	ll ret = 1;
	while (n) {
		if (n & 1) ret = ret*a % Mod;
		a = (ll)a*a % Mod;
		n >>= 1;
	}
	return ret;
}

int main (void)
{
	int t, m;
	scanf ("%d", &t);
	while (t--) {
		scanf ("%d", &m);
		ll ans = 1, n = 1, p, q;
		for (int i = 0; i < m; ++i) {
			scanf ("%lld%lld", &p, &q);
			n = n*pow_mod (p, q) % Mod;
			ans = ans*(q*(p-1)%Mod*pow_mod(p, Mod-2)%Mod+1) % Mod;
		}
		ans = ans*n % Mod;
		printf ("%lld\n", ans);
	}
	return 0;
 } 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值