C语言 - 数据的存储(进阶)

本文介绍了C语言中数据类型的分类,重点探讨了整型和浮点型在内存中的存储方式,包括原码、反码、补码表示,以及大小端存储模式的概念。还讲解了浮点数在内存中的表示遵循IEEE 754标准。
摘要由CSDN通过智能技术生成

目录

1.数据类型介绍

基本内置类型:

类型的意义: 

1.1 类型的基本归类: 

 整形家族:

浮点数家族:

 构造类型:

指针类型: 

空类型: 

 2. 整形在内存中的存储

原码

反码

补码

内存中的存储: 

2.1 大小端介绍 

什么是大端小端:

为什么有大端和小端:

 3. 浮点型在内存中的存储

 常见的浮点数:

3.1 浮点数存储的例子:

 3.2 浮点数存储规则


 

1.数据类型介绍

基本内置类型:

- char            //字符数据类型
- short          //短整型            
- int               //整形              
- long           //长整型           
- long long  //更长的整形     
- float          //单精度浮点数  
- double      //双精度浮点数  

类型的意义: 

1. 使用这个类型开辟内存空间的大小(大小决定了使用范围
2. 如何看待内存空间的视角

1.1 类型的基本归类: 

 整形家族:

char:                          
    unsigned char        
    signed char             

short:                         
    unsigned short [int]
    signed short [int]    

int:                              
    unsigned int            
    signed int                

long:                          
    unsigned long [int]
    signed long [int]     

浮点数家族:

float                             
double                         

 构造类型:

- 数组类型                    
- 结构体类型 struct      
- 枚举类型 enum         
- 联合类型 union         

指针类型: 

int *pi;                          
char *pc;                      
float* pf;                       
void* pv;                      

空类型: 

void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型

 2. 整形在内存中的存储

 计算机中的整数有三种表示方法,即原码反码补码

三种表示方法均有符号位数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位负整数的三种表示方法各不相同

原码

直接将二进制按照正负数的形式翻译成二进制就可以 

反码

将原码的符号位不变,其他位依次按位取反就可以得到了

补码

 反码+1就得到补码

 正数的原、反、补码都相同
对于整形来说:数据存放内存中其实存放的是补码

内存中的存储: 

2.1 大小端介绍 

什么是大端小端:

 大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地
址中

为什么有大端和小端:

因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编
译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为
高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

 3. 浮点型在内存中的存储

 常见的浮点数:

3.14159
1E10
浮点数家族包括: float、double、long double 类型。
浮点数表示的范围:float.h中定义 

3.1 浮点数存储的例子:

#include <stdio.h>
int main()
{
    int n = 9;
    float *pFloat = (float *)&n;
    printf("n的值为:%d\n",n);
    printf("*pFloat的值为:%f\n",*pFloat);
    *pFloat = 9.0;
    printf("num的值为:%d\n",n);
    printf("*pFloat的值为:%f\n",*pFloat);
    return 0;
}

输出结果: 

 

 3.2 浮点数存储规则

 num *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。

 详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
    (-1)^S * M * 2^E                                                                 
    (-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
    M表示有效数字,大于等于1,小于2。                             
    2^E表示指数位。                                                              

举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,s=1,M=1.01,E=2。

IEEE 754规定: 

对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

 

 对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

 

IEEE 754对有效数字M和指数E,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的
xxxxxx部分。比如保存1.01的时
候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位
浮点数为例,留给M只有23位,
将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们
知道,科学计数法中的E是可以出
现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数
是127;对于11位的E,这个中间
数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即
10001001。

然后,指数E从内存中取出还可以再分成三种情况: 

 E不全为0或不全为1

 这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将
有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为
01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进
制表示形式为:

0 01111110 00000000000000000000000

E全为0 

 这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于
0的很小的数字。

 E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值