机器学习小白学习笔记---day2---knn(分类回归)

本文是作者学习机器学习的笔记,主要介绍了knn算法,特别是通过可视化帮助理解1-NN, 3-NN, 5-NN的决策边界。通过乳腺癌数据集探讨了k近邻模型的精度与泛化性能,并展示了k近邻回归在wave数据集上的应用。总结了knn模型的优点(易于理解,构建快速)和缺点(特征多时效果不佳,预测速度慢)。" 106090286,8307384,深度学习驱动的蜂窝网络主动缓存策略,"['深度学习', '缓存技术', '蜂窝网络', '移动数据', '数据预处理']
摘要由CSDN通过智能技术生成

机器学习小白学习笔记之scikit-learn

最近刚把西瓜书啃完,一大堆理论让脑子真的是一团浆糊,说实话看的基本只有一个概念哈哈哈,效果不高,但是让我对与机器学习真的是整体有了一个大的了解,但是并没能将每个课后作业都完成,甚至很多公式推导也没实现,太难了,让我着手于实践,古人云实践出真知,又拿起了另一本书《Introduce to Mashine Learning with python》

今天开启第二章,进来就是对knn模型的一个诠释,展现在图表中就非常好理解,毕竟作为最简单的机器学习算法,要是这个都理解不了那就不用学了哈哈哈。下面直接上图,本文主要记录一下学习过程与心得体验。

1-nn(只考虑一个最近邻)
在这里插入图片描述

2-nn(考虑三个最近邻)
在这里插入图片描述
看图就很容易理解了,就是给定一个测试点,考虑与其最近的训练样本的预测结果,多个的话通过投票法,选择出预测结果。

下面我跟随着书本,把1,3,5近邻的决策边界可视化:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值